• Title/Summary/Keyword: surface pressure coefficient

Search Result 532, Processing Time 0.028 seconds

A study of interface heat transfer coefficient between die and workpiece for hot forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.;Bae W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF

NUMERICAL ANALYSIS OF PRESSURE PERTURBATION OF DELTA WING VORTEX FLOW AT A HIGH ANGLE OF ATTACK (고 받음각 ONERA 70도 삼각날개 와류 유동의 압력 섭동 분석)

  • Son, M.S.;Sa, J.H.;Park, S.H.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Delayed Detached-Eddy Simulation was conducted to investigate surface pressure coefficient distribution and surface pressure fluctuation over an ONERA 70-degree delta wing at a high angle of attack. Time-averaged surface pressure distribution is directly affected by the primary vortices, whereas the pressure fluctuation is influenced by the unsteady fluctuating boundary layer over the surface. And pressure coefficient, velocity, pressure fluctuation, and turbulent kinetic energy were analyzed along the vortex core in order to investigate the process of vortex breakdown. Consequently, strong pressure fluctuations were found where the vortex breakdown was occurred at x~620 mm. The turbulent kinetic energy abruptly increased and followed after the vortex breakdown.

Analysis of the Characteristics of Peak External Pressure Coefficient Working on Roof Surface according to the Shape and Layout of Green Houses (비닐하우스의 형태와 배치에 따른 지붕면 피크외압계수 특성분석)

  • You, Ki-Pyo;Paek, Sun-Young;Kim, Young-Moom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Among the protected horticulture facilities in Korea, 99.2% are pipe-framed green houses and most of them are structurally vulnerable single-span type green houses. This study examined peak external pressure coefficient for the roof surface of a green house group composed of single-span and a multiple-span green houses. According to the results of the experiment, the distribution of peak external pressure coefficient was around 30% higher in the single-span greenhouse than in the multi-span ones. The external pressure coefficient for the roof surface of the vinyl house group was, in all of the three vinyl houses, was around 20%-30% higher than that for single-span greenhouses.

  • PDF

Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System (4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정)

  • Kwon, Hyun-Goo;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

Analysis of the Wind Pressure Coefficient Characteristic of Livestock Shed Roof Surface according to the Opening of Side Walls (측벽 개방유무에 따른 축사지붕면의 풍압계수 특성분석)

  • You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • Livestock buildings are rural facilities as vulnerable to natural disasters as vinyl houses. Many of livestock buildings have a roof but without side walls. The roof of such structures is easily blown away by a typhoon and this results in a heavy loss. Therefore, farmers install winch curtains on the sides to prevent damages caused by typhoons. This study purposed to examine the distribution of wind pressure coefficient among different positions of livestock shed roof according to the opening of side walls. It was found that according to the distribution of peak external pressure coefficient on the roof surface of livestock shed, the wind blowing at wind angle $0^{\circ}$ was disadvantageous to roof surface regardless of the presence of side walls. However, it was confirmed that the peak external pressure coefficient was affected by wind angle and the length of eave depending on the presence of side walls.

Evaluation of Friction Characteristics for High-Strength-Steel Sheets Depending on Conditions (마찰조건에 따른 고강도 강판의 마찰특성 평가)

  • Kim, J. E.;Heo, J. Y.;Yoon, I. C.;Song, J. S.;Youn, K. T.;Park, C. D.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.381-386
    • /
    • 2015
  • Recently, high-strength-steel sheets have been used extensively for increasing fuel-efficiency and stability in automobiles. A study on the characteristics regarding friction factors is required because high-strength-steel sheets have higher contact pressure at the tool interface as compared to low-strength steel sheets. For the current study, a sheet friction test was used to examine the influence of several factors on friction. The friction tests were performed on two types of sheet steels (SPFC590 and SPFC980) to obtain friction coefficients as a function of contact pressure, surface roughness, lubricant viscosity, and speed. Based on the experimental results for SPFC590 and SPFC980, the friction coefficient decreased with increasing contact pressure, but the friction coefficient increased with increasing surface roughness. Also, the friction coefficient decreased with increasing lubricant viscosity and decreasing speed.

A Study on the Estimation of Frictiom Coefficient between Tire and Road Surface Using Running Car data (실차 데이터를 이용한 차륜과 노면간의 마찰계수 예측에 관한 연구)

  • 우관제;산기준일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.207-213
    • /
    • 1999
  • In this study, the possibility of estimation of friction coefficient between tire and road surface using running car data are checked. To get necessary data, such as tire and car velocities and braking force, a test car is driven with certain magnitude of decelerations from pre-set initial velocities to stop . The data are used to estimate friction coefficient with property chosen parameters , e.g,, driving stiffness, pressure distribution functions, etc. Experimental results show that running data car be used with properly chosen parameters to estimate friction coefficient.

  • PDF

Contact Stress Evaluations for the Ball Groove of Weiss Type Constant velocity joint (Weiss형 등속조인트 볼 홈의 접촉응력평가)

  • 김완두;이순복
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 1989
  • For the life prediction and fatigue failure prevention of the constant velocity joint, the maximum equivalent stress and its location in depth from the contact area are essential. These values give the fundamental information to determine the depth of the surface hardening treatment at the contact area. Contact stresses are evaluated at the surface and subsurface of the ball groove of the Weiss type constant velocity joint. The maximum contact pressure and the maximum equivalent stress are obtained. The effects of various parameters such as the radius of ball groove, friction coefficient, and residual stress are studied. The maximum equivalent stress and the maximum contact pressure increase as the radius of the ball grove increases. The location of the maximum equivalent stress moves toward surface as the friction coefficient increases. It was also found that the maximum equivalent stress becomes minimum when the compressire residual stress is about 0.16 times of the maximum contact pressure.

Jet Impingement Heat Transfer on a Cylindrical Pedestal Encountered in Chip Cooling (충돌제트를 이용한 Pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Lee, Joon-Sik;Chung, Young-Suk;Chung, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The heat transfer and flow measurements on a cylindrical pedestal mounted on a flat surface with a turbulent impinging jet were made. The experiments were made for the jet Reynolds number of Re = 23,000, the dimensionless nozzle-to-surface distance of L/d = 2~10, the dimensionless pedestal height of H/D = 0~1.5. Measurements of the surface temperature and the Nusselt number distributions on the plate surface were made using liquid crystal and shroud-transient technique. Flow measurements involve smoke flow visualization and the wall pressure coefficient. The results show that the wall pressure coefficient sharply decreases along the upper surface of the pedestal. However, the pressure increases when the fluid escapes from the pedestal and then collides on the plate surface. The secondary maxima in the Nusselt numbers occur in the region of 1.0 $\leq$ r/d $\leq$ 1.9. Their values for the case of H/D = 0.5 are maximum 80% higher than those for other cases. The formation of the secondary maxima may be attributed to the reattachment of flow on the plate surface which was separated at the edge of the pedestal.