• 제목/요약/키워드: surface plasmon polariton

검색결과 24건 처리시간 0.034초

광통신 대역에서의 유전체 직각 릿지 표면 플라즈몬 도파로 해석 (Analysis of Dielectric-Loaded Surface Plasmon Polariton Waveguides at Telecommunication Wavelengths)

  • 정재훈
    • 대한전자공학회논문지TC
    • /
    • 제47권11호
    • /
    • pp.43-48
    • /
    • 2010
  • 유전체 직각 릿지 표면 플라즈몬 도파로의 주요 파라미터인 모드 유효굴절률과 도파길이를 해석하였다. 여러 금속 및 유전체를 릿지의 폭과 두께를 변화시키며 유한요소법을 이용하여 계산하였다. 상반되는 두 파라미터를 포함하는 메트릭으로 2차원 figure of merit을 사용하였다. 계산결과를 이용하면 광통신 파장대역에서 파장이하로 모여 낮은 전파손실을 가진 도파로의 여러 파라미터 및 크기를 설계할 수 있다.

Enhancement of the surface plasmon-polariton excitation in nanometer metal films

  • Kukushkin, Vladimir A.;Baidus, Nikoly V.
    • Advances in nano research
    • /
    • 제2권3호
    • /
    • pp.173-177
    • /
    • 2014
  • This study is aimed to the numerical modeling of the surface plasmon-polariton excitation by a layer of active (electrically pumped) quantum dots embedded in a semiconductor, covered with a metal. It is shown that this excitation becomes much more efficient if the metal has a form of a thin (with thickness of several nanometers) film. The cause of this enhancement in comparison with a thick covering metal film is the partial surface plasmon-polariton localized at the metal-semiconductor interface penetration into air. In result the real part of the metal+air half-space effective dielectric function becomes closer (in absolute value) to the real part of the semiconductor dielectric function than in the case of a thick covering metal film. This leads to approaching the point of the surface plasmon-polariton resonance (where absolute values of these parts coincide) and, therefore, the enhancement of the surface plasmon-polariton excitation. The calculations were made for a particular example of InAs quantum dot layer embedded in GaAs matrix covered with an Au film. Its results indicate that for the 10 nm Au film the rate of this excitation becomes by 2.5 times, and for the 5 nm Au film - by 6-7 times larger than in the case of a thick (40 nm or more) Au film.

Optimal Design of Dielectric-loaded Surface Plasmon Polariton Waveguide with Genetic Algorithm

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제14권3호
    • /
    • pp.277-281
    • /
    • 2010
  • We propose a design and optimization method for a dielectric-loaded surface plasmon polariton waveguide using a genetic algorithm. This structure consists of a polymer ridge on top of two layers of substrate and gold film. The thickness, width and refractive index of the ridge are designed to optimize the figures of merit including mode confinement and propagation length. The modal analysis combined with the effective index method shows that the designed waveguide exhibits a fundamental propagation mode with high mode confinement while ensuring that the propagation loss remains relatively low.

Design of a Plasmonic Switch Using Ultrathin Chalcogenide Phase-change Material

  • Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.239-246
    • /
    • 2017
  • A compact plasmonic switching scheme, based on the phase change of a thin-film chalcogenide material ($Ge_2Sb_2Te_5$), is proposed and numerically investigated at optical-communication wavelengths. Surface plasmon polariton modal analysis is conducted for various thicknesses of dielectric and phase-change material layers, and the optimized condition is induced by finding the region of interest that shows a high extinction ratio of surface plasmon polariton modes before and after the phase transition. Full electromagnetic simulations show that multiple reflections inside the active region may conditionally increase the overall efficiency of the on/off ratio at a specific length of the active region. However, it is shown that the optimized geometrical condition, which shows generally large on/off ratio for any length of active region, can be distinguished by observing the multiple-reflection characteristic inside the active region. The proposed scheme shows an on/off switching ratio greater than 30 dB for a length of a few micrometers, which can be potentially applied to integrated active plasmonic systems.

Modulator of surface plasmon polariton based cycle branch graphene waveguide

  • Zhu, Jun;Xu, Zhengjie;Xu, Wenju;Wei, Duqu
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.84-88
    • /
    • 2018
  • At present, an important research area is the search for materials that are compatible with CMOS technology and achieve a satisfactory response rate and modulation efficiency. A strong local field of graphene surface plasmon polariton (SPP) can increase the interaction between light and graphene, reduce device size, and facilitate the integration of materials with CMOS. In this study, we design a new modulator of SPP-based cycle branch graphene waveguide. The structure comprises a primary waveguide of graphene-$LiNbO_3$-graphene, and a secondary cycle branch waveguide is etched on the surface of $LiNbO_3$. Part of the incident light in the primary waveguide enters the secondary waveguide, thus leading to a phase difference with the primary waveguide as reflected at the end of the branch and interaction coupling to enhance output light intensity. Through feature analysis, we discover that the area of the secondary waveguide shows significant localized fields and SPPs. Moreover, the cycle branch graphene waveguide can realize gain compensation, reduce transmission loss, and increase transmission distance. Numerical simulations show that the minimum effective mode field area is about $0.0130{\lambda}^2$, the gain coefficient is about $700cm^{-1}$, and the quality factor can reach 150. The structure can realize the mode field limits of deep subwavelength and achieve a good comprehensive performance.

Directional Radiation of Surface Plasmon Polaritons at Visible Wavelengths through a Nanohole Dimer Optical Antenna Milled in a Gold Film

  • Janipour, Mohsen;Hodjat-Kashani, Farrokh
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.799-808
    • /
    • 2014
  • The mechanism of optical interaction of two nanoholes, milled in an opaque gold film, by means of surface plasmon polariton (SPP) propagation is investigated. The interaction depends on the polarization direction of the incident light when the nanohole pair is illuminated through uniform single antenna excitations. It is shown that by illuminating one of the nanoholes, under single antenna excitation, the other nanohole can be excited indirectly via propagated SPPs from the excited nanohole. In addition, it is found that the spectrum of electromagnetic power above the surface of the metallic film at an arbitrary point along the axis of the nanohole pair presents two resonant peaks. These peaks are due to the optical interaction between nanoholes, where the short- and long-wavelength peaks can be assigned to in-phase and antiphase interactions of magnetic dipoles relative to each nanohole, respectively. The magnetic coupled dipole approximation (MCDA) method confirms the simulation results.

10 Gbps Optical Signal Transmission via Long-Range Surface Plasmon Polariton Waveguide

  • Ju, Jung-Jin;Kim, Min-Su;Park, Sun-Tak;Kim, Jin-Tae;Park, Seung-Koo;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.808-810
    • /
    • 2007
  • We demonstrate 10 Gbps optical signal transmission via long-range surface plasmon polaritons (LR-SPPs) in a very thin metal strip-guided geometry. The LR-SPP waveguide was fabricated as a 14 nm thick, 2.5 ${\mu}m$ wide, and 4 cm long gold strip embedded in a polymer and pigtailed with single-mode fibers. The total insertion loss of 16 dB was achieved at a wavelength of 1.55 ${\mu}m$ as a carrier wave. In a 10 Gbps optical signal transmission experiment, the LR-SPP waveguide exhibits an excellent eye opening and a 2.2 dB power penalty at $10^{-12}$ bit error rate. We confirm, for the first time, that LR-SPPs can efficiently transfer data signals as well as the carrier light.

  • PDF

Analysis of Planar Metal Plasmon Waveguides

  • Jung, Jae-Hoon
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.97-102
    • /
    • 2010
  • Propagation modes of symmetric metal-insulator-metal SPP waveguides are analyzed. Main characteristics of these waveguides such as mode effective index, propagation length, and penetration depths are calculated at the telecom wavelength for different layer thickness. We adopt Au, Al as a metal material and air, glass as a dielectric material and obtain different optical characteristics. The surface plasmon characteristics in this paper provide a numerical insight for designing nanostructure metal plasmon waveguide.