Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.3.277

Optimal Design of Dielectric-loaded Surface Plasmon Polariton Waveguide with Genetic Algorithm  

Jung, Jae-Hoon (Department of Electronics and Electrical Engineering, Dankook University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.3, 2010 , pp. 277-281 More about this Journal
Abstract
We propose a design and optimization method for a dielectric-loaded surface plasmon polariton waveguide using a genetic algorithm. This structure consists of a polymer ridge on top of two layers of substrate and gold film. The thickness, width and refractive index of the ridge are designed to optimize the figures of merit including mode confinement and propagation length. The modal analysis combined with the effective index method shows that the designed waveguide exhibits a fundamental propagation mode with high mode confinement while ensuring that the propagation loss remains relatively low.
Keywords
Surface plasmon polariton; Waveguide; Genetic algorithm;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Boston, USA, 1989).
2 E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).
3 J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: Univ. of Michigan Press, USA, 1975).
4 J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413-425 (2008).   DOI
5 G. Veronis, Z. Yu, S. Kocabas, D. Miller, M. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302-308 (2009).   DOI
6 T. Holmgaard and S. I. Bozhevolnyi, “Thoretical analysis of dielectric-load surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).   DOI   ScienceOn
7 A. V. Krasavin and A. V. Zayats, “Three-dimentional numerical modeling of photonic integration with delectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).   DOI   ScienceOn
8 Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmonpolariton waveguides,” Opt. Express 17, 3610-3618 (2009).   DOI
9 J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” IEEE J. Lightwave Technol. 16, 1928-1932 (1998).   DOI   ScienceOn
10 G. Cormier, R. Boudreau, and S. Thériault, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” J. Opt. Soc. Am. B 18, 1771-1776 (2001).   DOI   ScienceOn
11 G. W. Chern and L. A. Wang, “Design of binary long-period fiber grating filters by the inverse-scattering method with genetic algorithm optimization,” J. Opt. Soc. Am. A 19, 772-780 (2002).   DOI   ScienceOn
12 D. Dai, “Subwavelength silica-sased optical waveguide with a multilayered buffer for sharp bending,” IEEE J. Lightwave Technol. 27, 2489-2494 (2009).   DOI   ScienceOn
13 S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467-9476 (2006).   DOI
14 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).
15 T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Comm. 244, 455-459 (2005).   DOI   ScienceOn
16 A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005).   DOI
17 A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 912-918 (2006).   DOI   ScienceOn
18 P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).   DOI   ScienceOn
19 G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” IEEE J. Lightwave Technol. 24, 4391-4401 (2006).   DOI   ScienceOn
20 T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).   DOI   ScienceOn
21 R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).   DOI   ScienceOn
22 S. I. Bozhevolnyi, Plasmonic Nanoguides and Circiuts, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, Singapore, 2009), Chapter 1.