1 |
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Boston, USA, 1989).
|
2 |
E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).
|
3 |
J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: Univ. of Michigan Press, USA, 1975).
|
4 |
J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413-425 (2008).
DOI
|
5 |
G. Veronis, Z. Yu, S. Kocabas, D. Miller, M. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302-308 (2009).
DOI
|
6 |
T. Holmgaard and S. I. Bozhevolnyi, “Thoretical analysis of dielectric-load surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
DOI
ScienceOn
|
7 |
A. V. Krasavin and A. V. Zayats, “Three-dimentional numerical modeling of photonic integration with delectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
DOI
ScienceOn
|
8 |
Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmonpolariton waveguides,” Opt. Express 17, 3610-3618 (2009).
DOI
|
9 |
J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” IEEE J. Lightwave Technol. 16, 1928-1932 (1998).
DOI
ScienceOn
|
10 |
G. Cormier, R. Boudreau, and S. Thériault, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” J. Opt. Soc. Am. B 18, 1771-1776 (2001).
DOI
ScienceOn
|
11 |
G. W. Chern and L. A. Wang, “Design of binary long-period fiber grating filters by the inverse-scattering method with genetic algorithm optimization,” J. Opt. Soc. Am. A 19, 772-780 (2002).
DOI
ScienceOn
|
12 |
D. Dai, “Subwavelength silica-sased optical waveguide with a multilayered buffer for sharp bending,” IEEE J. Lightwave Technol. 27, 2489-2494 (2009).
DOI
ScienceOn
|
13 |
S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467-9476 (2006).
DOI
|
14 |
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).
|
15 |
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Comm. 244, 455-459 (2005).
DOI
ScienceOn
|
16 |
A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005).
DOI
|
17 |
A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 912-918 (2006).
DOI
ScienceOn
|
18 |
P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
DOI
ScienceOn
|
19 |
G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” IEEE J. Lightwave Technol. 24, 4391-4401 (2006).
DOI
ScienceOn
|
20 |
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
DOI
ScienceOn
|
21 |
R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
DOI
ScienceOn
|
22 |
S. I. Bozhevolnyi, Plasmonic Nanoguides and Circiuts, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, Singapore, 2009), Chapter 1.
|