• 제목/요약/키워드: surface phase transition

검색결과 250건 처리시간 0.021초

선경사각에 따른 광학적 자기보상 스플레이 셀의 상전이와 응답속도 연구 (Study on Phase Transition and Response Time of Optically Compensated Splay Cell according to Pretilt Angle)

  • 황성한;정병선;황정연;서대식;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.422-423
    • /
    • 2006
  • We have studied phase transition time and response time of optically compensated splay(OCS) cell as a function of surface pretilt angle. With decreasing surface pretilt angle, phase transition time decreases and response time becomes faster in the OCS cell. Besides, the more surface pretilt angle decreases, the easier OCS structure is obtained.

  • PDF

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

표면상변이의 강인력 의존성 : 분배함수로 부터의 고찰 (On strong interaction dependence of the surface phase transition : Consideration through the partition function)

  • Cheol Ho Kim;Bo Seung Hwang
    • 한국결정성장학회지
    • /
    • 제11권6호
    • /
    • pp.264-268
    • /
    • 2001
  • 표면계의 분배함수를 적절히 계산하여 유도하였다. 흡착등온식을 유도하였다. 유도된 흡작등온식의 분석을 통하여 표면상변이 현상은 흡착분자간에 강한 인력이 존재할 때 일어나는 것임을 보였다. 얻어진 이론적 결과는 실험 사실을 잘 설명한다는 것을 알수 있었다.

  • PDF

The Measurement of Maxwell Displacement Current of Phospholipid Monolayers on the Water Surface

  • Park, Keun-Ho
    • 한국응용과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 1997
  • The organization of phospholipid monolayers and their monolayers mixed with fatty acid containing azobenzene on the water surface was investigated by means of the displacement current measurement method. The phase transition from the gaseous phase to the gaseous-fluid phase which accompanies the polar ordering of phospholipid molecules was detected in the range of immeasurably low surface pressure. The molecular area which gives the onset of the transition was determined for phospholipid monolayers. The Maxwell displacement current(MDC) pulses were generated across mixed monolayers due to the photoisomerization of fatty acid containing azobenzene by alternating irradiation of ultraviolet and visible light, because the condensation of pure azobenzene monolayers was loosened by the introduction of phospholipids into the monolayers. The displacement currents generated during light irradiation were also investgated in connection with monolayer compression cycles. It was found that the maximum of MDC appeared at the molecular area just before the initial rise of surface pressure in compression cycles.

Temperature Dependence of Thermo-Mechanical Properties of Banana Fiber-Reinforced Polyester Composites

  • Shaktawat, Vinodini;Pothan, Laly A.;Saxena, N.S.;Sharma, Kananbala;Sharma, T.P.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.89-99
    • /
    • 2008
  • Using a Dynamic Mechanical Analyzer (DMA), mechanical properties like modulus and phase transition temperature of polyester composites of banana fibers (treated and untreated) are measured simultaneously. The shifting of phase transition temperature is observed in some treatments. The performance of the composite depends to a large extent on the adhesion between polymer matrix and the reinforcement. This is often achieved by surface modification of the matrix or the filler. Banana fiber was modified chemically to achieve improved interfacial interaction between the fiber and the polyester matrix. Various silanes and alkalies were used to modify the fiber surface. Chemical modification was found to have a profound effect on the fiber/matrix interaction, which is evident from the values of phase transition temperatures. Of the various chemical treatments, simple alkali treatment with 1% NaOH was found to be the most effective.

연삭된 지르코니아의 표면 특성 (Surface Characteristics of the Ground Zirconia)

  • 김사학
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.323-329
    • /
    • 2011
  • Purpose: This study was conducted to examine the phase transition according to the zirconia surface treatment. Methods: The specimens were divided to four groups. The first group was sintered at $1,500^{\circ}C$ and ground; the second group was sintered at $700^{\circ}C$, ground, and sintered at $1,500^{\circ}C$; the third group was sintered at $1,500^{\circ}C$, ground, and $110{\mu}m$-sandblasted; and the fourth group was sintered at $1,500^{\circ}C$, ground, $110{\mu}m$-sandblasted, treated with 9.5% hydrofluoric acid, and ultrasonic cleaner-washed for two minutes. The monoclinic fractions were measured, and the surface was observed via SEM. Results: The monoclinic fraction was $0.13{\pm}0.19%$ in the control group Zr1, $1.91{\pm}0.15%$ in the experimental group Zr2, $7.71{\pm}0.34%$ in Zr3, and $8.39{\pm}0.25%$ in Zr4. On the surface, the phase transition hardly occurred in the control group Zr1, but it increasingly occurred in the experimental groups Zr3 and Zr4. Conclusion: The monoclinic fraction was high in the experimental groups Zr3 and Zr4. The phase transition did not occur in the control group, but increasingly occurred in the experimental groups.

Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy

  • Choi, Jung-Seok;Kang, Hun-Gu;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2623-2627
    • /
    • 2011
  • We investigated the surface structure and wetting behavior of octaneselenolate self-assembled monolayers (SAMs) on Au(111) formed in a 50 ${\mu}M$ ethanol solution according to immersion time, using scanning tunneling microscopy (STM) and an automatic contact angle (CA) goniometer. Closely-packed, well-ordered alkanethiol SAMs would form as the immersion time increased; unexpectedly, however, we observed the structural transition of octaneselenolate SAMs from a molecular row phase with a long-range order to a disordered phase with a high density of vacancy islands (VIs). Molecularly resolved STM imaging revealed that the missing-row ordered phase of the SAMs could be assigned as a $(6{\times}{\surd}3)R30^{\circ}$ superlattice containing three molecules in the rectangular unit cell. In addition, CA measurements showed that the structural order and defect density of VIs are closely related to the wetting behaviors of octaneselenolate SAMs on gold. In this study, we clearly demonstrate that interactions between the headgroups and gold surfaces play an important role in determining the physical properties and surface structure of SAMs.

평면충돌제트에 의한 단상 및 비등 열전달의 국소적 측정 (The Local Measurements of Single Phase and Boiling Heat Transfer by Confined Planar Impinging Jets)

  • 우성제;신창환;조형희
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.895-901
    • /
    • 2004
  • Single-phase convection and nucleate boiling heat transfer were locally investigated for confined planar water jets. The detailed distributions of the wall temperature and the convection coefficient as well as the typical boiling curves were discussed. The curve for the single-phase convection indicated the developing laminar boundary layer, accompanied by monotonic increase of the wall temperature in the stream direction. Boiling was initiated from the furthest downstream as heat flux increased. Heat transfer variation according to the streamwise location was reduced as heat flux increased enough to create the vigorous nucleate boiling. Velocity effects were considered for the confined free-surface jet. Higher velocity of the jet caused the boiling incipient to be delayed more. The transition to turbulence precipitated by the bubble-induced disturbance was obvious only for the highest velocity, which enabled the boiling incipient to start in the middle of the heated surface, rather than the furthest downstream as was the case of the moderate and low velocities. The temperature at offset line were somewhat tower than those at the centerline for single-phase convection and partial boiling, and these differences were reduced as the nucleate boiling developed. For the region prior to transition, the convection coefficient distributions were similar in both cases while the temperatures were somewhat lower in the submerged jet. For single-phase convection, transition was initiated at $x/W{\cong}2.5$ and completed soon for the submerged jet, but the onset of transition was retarded to the distance at $x/W{\cong}6$ for the fee-surface jet.

Purple Membrane으로 재구성된 $L-{\alpha}-lecithin$ Vesicle에서 Photochemical Reaction Differential Scanning Calorimetry에 의한 Methylene Blue의 에너지 전달 (Energy Transfer of Methylene Blue on the Purple Membrane Incorporated into $L-{\alpha}-lecithin$ Vesicle by Photochemical Reaction Differential Scanning Calorimetry)

  • 김기준;성기천;이후설
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.127-136
    • /
    • 1996
  • Thermograms of methylene blue(MB) in $L-{\alpha}-lecithin$ vesicle and incorporated purple membrane vesicle(InPM) systems have been studied by photochemical reaction differential scanning calorimetry at $25{\sim}55^{\circ}C$. Phase transition temperatures of lecithin vesicle, purple membrane(PM), and InPM were found to be independent of illumination of light(436nm) at $39{\sim}40^{\circ}C$, but endothermic phase transition was found in InPM vesicle. In MB-InPM system, endothermic phase transition was found on unillumination of light at $40{\sim}42^{\circ}C$, but exothermic phase transition was found on steady illumination of light at $48{\sim}52^{\circ}C$. It was estimated that the light energy absorbed from MB on vesicular surface was transferred to PM, and the transferred energy was redistributed to hydrophobic site of membrane. Therefore, the exothermic phase transition was measured at high temperature because of the increased hydrophobicity of acyl chain.

Atomic Force Microscopy Study of Conducting Layered Transition Metal Ditellurides

  • Kim Sung-Jin;Park So-Jung;Oh Hoon-Jung;Jeon, Il Cheol;Song Sunae
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1098-1103
    • /
    • 1994
  • Atomic force microscopy (AFM) images of two conducting layered transition-metal ditellurides, $TaTe_2$ and $Ta_{0.5}$$V_{0.5}$$Te_2$, were examined and their surface and bulk structural features were compared. All the measured unit cell parameters from AFM image were consistent and in complete agreement with the results of the X-ray diffraction. The microscopic structures of corrugated surface tellurium sheets were strongly affected by the modification of metal double zig-zag chains underneath Te surface. Large difference in the height amplitudes of AFM images in $TaTe_2$ and $Ta_{0.5}$$V_{0.5}$$Te_2$ phases was observed and this reflects large difference in the surface electron densities of two phases. On surface, the shorter intralayer Te…Te contacts in $TaTe_2$ induce more electron transfer from Te p-block bands to Ta d-block bands, thus electron density on surface observed in $TaTe_2$ is much lower than that of $Ta_{0.5}$$V_{0.5}$$Te_2$. However, in bulk, interlayer Te…Te contacts in V substituted phase are shorter than those in $TaTe_2$ phase, thus tellurium-to-metal electron transfer occurs more easily in $Ta_{0.5}$$V_{0.5}$$Te_2$ phase.