• Title/Summary/Keyword: surface mounted PMSM

Search Result 26, Processing Time 0.024 seconds

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan;Li, Hongmei;Zhang, Hengguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

A study on Permanent Magnet Synchronous Servo Motor Control (영구자석 동기 서보 전동기의 제어에 관한 연구)

  • Kim, J.K.;Choi, U.D.;Jung, M.K.;Lee, H.S.;Kim, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.543-547
    • /
    • 1991
  • This paper illustrates maximum torque per ampare radio operation and efficiency operation, which are prevalently applied to the control of permanent magnet synchronous motor(PMSM). Maximum torque per ampare ratio operation minimizes the copper loss of PMSM and maximum efficiency operation minimizes the total loss of PMSM. To verify the difference of these method, simulation and experiment results applied to IPMSM(Interior type PMSM) and SPMSM(Surface mounted PMSM) are presented.

  • PDF

Analysis of Operating Region for PMSM in a Voltage Plane (전압 평면에서 PMSM의 운전 영역 해석)

  • Park, Nae Chun;Kim, Sang Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.99-100
    • /
    • 2011
  • 본 논문에서는 전압평면에서 표면 부착형 영구자석 동기전동기(Surface Mounted Permanent Magnet Synchronous Motor, SPMSM)의 전압과 전류 제한에 따른 운전 영역을 분석하고, 무한 속도 제한을 갖는 SPMSM에 적용 가능한 전압 궤환을 이용한 약자속 제어 기법을 제안한다. 제안된 기법은 시뮬레이션을 통해 그 타당성을 검증하였다.

  • PDF

Sensorless Control for Surface Mounted Permanent Magnet Synchronous Machines at Low Speed

  • An, Lu;Franck, David;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.429-435
    • /
    • 2013
  • This paper proposes a sensorless speed control based on a novel extension of the torque producing flux (active flux) observer for the surface mounted permanent magnet synchronous machines (SPMSM) without additional high frequency signal injection. From the estimated torque producing flux, the rotor position and speed can be calculated at low speed due to their independency. Therefore, no rotor position sensor is required. Two approaches of the torque producing flux observer are presented and compared. The results show the stability and robustness of the expansion of the torque producing flux observer at low speed for the SPMSM.

The Finite Control Set Model Predictive Torque Control Method for Surface Mounted Permanent Magnetic Synchronous Motor of Electric Vehicle (전기자동차용 표면 부착형 영구자석 동기 전동기의 토크제어를 위한 유한 제어 요소 모델 예측제어(FCS-MPC) 기법)

  • Park, Seong Hwan;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.453-462
    • /
    • 2016
  • This paper proposes a torque control method for surface mounted permanent magnetic synchronous motor (PMSM) driven by a 2-level voltage source driven inverter, which has fast torque response and small torque ripple. The proposed torque control method follows the finite control set model predictive control (FCS-MPC) strategy. A reference state is derived at each time step for the given time varying torque reference and the cost index is defined so that the tracking error for this reference state should be penalized. The choice of an optimal output voltage vector is made first from the 6 possible active voltage vectors of the 2-level voltage source inverter. Then a modulation factor for the chosen optimal voltage vector is obtained so that the torque ripple can be reduced further. It is shown that the proposed FCS-MPC control method yields fast torque tracking response and small torque ripple through simulation and experiments.

Sensorless control of PMSM in low speed range using high frequency voltage injection (전압주입 방식을 이용한 PMSM 센서리스 제어에 관한 연구)

  • Yoon Seok-chae;Kim Jang-mok
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.119-122
    • /
    • 2003
  • This paper describes the sensorless technique for the surface-mounted permanent-magent synchronous motor(SPMSM or PMSM) drive based on magnetic saliency. The control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is achieved by appropriate signal processing to extract the position information from the stator current in the low speed range including zero speed. Proposed sensorless algorithm using the double-band hysteresis controller and initial rotor position detection exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes.

  • PDF

Development of a PMSM Drive System for Industrial Sewing Machine (침상침하용 재봉틀을 위한 PMSM 구동시스템 개발)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.129-133
    • /
    • 2011
  • In this paper, a surface mounted permanent magnet synchronous motor(SPMSM) drive system for industrial sewing machine was developed. Even through a lowr-esolution encoder is used for a low cost, using a full order observer enables to estimate accurate speed and position. And it also compensates a disturbance torque caused by the belt between a load and a motor. In order to control precisely stop positions of a needle, a speed trajectory is calculated from the acceleration pattern which is obtained from the position reference. The performance of the developed system is verified by experimental results.

  • PDF

Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor (영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어)

  • Baik, In-Cheol;Lee, Ju-Suk;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

Flux Weakening Control for Surface Mounted Permanent Magnet Synchronous Machine Driven by Dual Inverter (이중 인버터를 이용한 표면 부착형 영구자석 동기전동기의 약자속 제어)

  • Kim, Youngnam;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.437-442
    • /
    • 2013
  • For open-end permanent magnet synchronous machine(PMSM) with dual inverter system, where one inverter is connected to the source and the other is flying, the dc link voltage of the flying inverter can be boosted through the machine. For this reason, when compared with single inverter drive system, higher voltage can be applied to PMSM, and higher torque can be generated in the flux weakening region. In this case, however, active and reactive powers are separately supplied by each inverter to maintain the dc link voltage of flying inverter. Therefore, the required flux weakening control is different from the conventional method for a single inverter drive system. This paper proposes the novel flux weakening control method which maximizes the active voltage component in a dual inverter PMSM drive system. The proposed method was demonstrated and verified through experimental results.