• Title/Summary/Keyword: surface moisture content

Search Result 549, Processing Time 0.022 seconds

Development of a Continuous Type Brown Rice Conditioning Equipment (연속식 현미 조질기 개발)

  • 송대빈;고학균
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.503-510
    • /
    • 2000
  • To improve the milling condition of brown rice a continuous type conditioning equipment was developed. To validate the performance of this machine the experimental operation was done at Sa-cheon RPC(Rice Processing Complex) using short grain rough. The initial moisture contents of brown rice were 15.0∼16.5%(w.b) and the flow rate of brown rice passing through the conditioner were 4,370kg per hour. The moisture content differences of brown rice between conditioned and non-conditioned were showed within 0.5%(w.b) This results means that the water injected to brown rice were absorbed to the surface of brown rice evenly. The moisture contents of conditioned treated milled rice were showed slightly higher than that of non-conditioned ones but it was considered that the conditioning process did not affected the weight increasing of milled rice by water supply. For initial moisture contents of 15.0∼16.5%(wb) brown rice it was found that the proper water supply rate was 0.115(cc-water)/(kg·%-brown rice) and the increments of whole rice were 2.2% compared to the non-conditioned ones. it was considered that the conditioning process did not influenced the whiteness of milled rice because the whiteness differences between conditioned and non-conditioned milled rice were negligible. About 18% of electric power which drives the abrasive type rice milling machine was saved at 0.115(cc-water)/(kg·%-brown rice) of water supply rate.

  • PDF

Concrete beams submitted to various moisture environments

  • Multon, S.;Seignol, J.F.;Toutlemonde, F.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.71-83
    • /
    • 2006
  • This paper deals with the effects of various moisture environments on the structural behavior of concrete beams. The presented results were obtained within a large experimental program carried out at the Laboratoire Central des Ponts et Chauss$\acute{e}$es (LCPC), with Electricit$\acute{e}$ de France (EDF) as a partner. The aim of this paper is to point out and to quantify the strains resulting from unidirectional moisture conditions: a drying gradient applied during 14 months, followed by the re-wetting of the dried surface during 9 months. The effect of reinforcement on the shrinkage and on the deformation due to water absorption is pointed out. Moreover, a lot of tests on companion cylinders and prisms were carried out to determine the mechanical characteristics of the material and help checking analysis methods. The paper focuses on numerous measurements obtained during the 23 months on one plain concrete beam and one reinforced concrete beam: variation of water content, followed by precise weighing and gammadensitometry, relative humidity measurements, local and global deformations in the three directions and deflection of the beams. Thus, the effects of drying and water absorption on the behavior of concrete structures are documented and analyzed in comparison with existing representation of water diffusion.

Basic study on the biological and physicochemical properties of burnt forest soil for the ecological restoration by organic waste (유기성폐자원을 이용한 산불토양의 생태학적 복원을 위한 토양의 생물학적, 물리화학적 기초특성연구)

  • Jung, Young-Ryul;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Forest soils were analyzed on their biological and physicochemical properties for the ecological restoration of burnt forest soil using organic wastes and proper microorganisms. Three kinds of soil samples were collected from undamaged soil(US), naturally restoring soil(NS) and artificially restoring soil(AS). All soil samples were sandy soil and acidic soil, ranged pH 5.34~5.78. Moisture content was higher in the soil of NS region. And the others were similar. Total organic matter and soluble sugar were higher at the surface, generally. Heterotrophic soil microbes were abundant at the surface soil of NS and subsoil of AS. Dehydrogenase, cellulase and phosphatase activities were higher at the NS soil. Especially, Dehydrogenase activity as primary index of soil microbial process showed high correlationship with moisture content(r=0.90, P < 0.05).

  • PDF

Effect of Reserve Air-Drying of Korean Pine Heavy Timbers on High-temperature and Low-humidity Drying Characteristics (예비천연건조가 잣나무 중목구조부재의 고온저습건조 특성에 미치는 영향)

  • Lee, Chang-Jin;Lee, Nam-Ho;Park, Moon-Jae;Park, Joo-Saeng;Eom, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2014
  • The pre-air-drying of Korean pine before the high-temperature and low-humidity drying was shown to be effective in uniform moisture content distribution and prevention of surface check. Our results suggest that initial moisture content of the timber also plays important role in high-temperature and low-humidity drying method. The pre-air-drying also helps in the reduction of surface checks in Korean pine when compared to the Korean pine dried by only high-temperature and low-humidity. End-coating was not effective in the prevention of twist, shrinkage, case hardening and internal checks. The pre-air-drying reduces the internal tension stresses which occur during high-temperature and low-humidity drying thus decreasing case hardening and also preventing internal checks. The pre-air-drying decreases the moisture content and causes shrinkage which leads to increased twist in the Korean pine.

Effect of End-coating Around Pith of Heavy Timbers of Red Pine and Korean Pine on High-temperature and Low-humidity Drying Characteristics (중심부분 엔드코팅처리가 국산 소나무와 잣나무 중목구조부재의 고온저습건조 특성에 미치는 영향)

  • Lee, Chang-Jin;Lee, Nam-Ho;Eom, Chang-Deuk;Shin, Ik-Hyun;Park, Moon-Jae;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.221-233
    • /
    • 2013
  • This study was performed to identify the effect of end-coating around pith of heavy timbers of Red pine and Korean pine on high temperature and low humidity drying characteristics. Total drying times were 268 hours, and ranges of final moisture content was investigated that Red Pine 9.2% to 10.8% MC for square and round timber, in case of Korean Pine 15.0% to 22.0% MC for square timber, 12.8% to 20.4% MC for round timber. Moisture content distribution of Red Pine was a uniform, but part of high moisture content was found in Korean Pine. In case of Korean pine, the surface checks were occurred more severe than in case of Red pine, and end-coating treatment were investigated to be ineffective on surface check. The internal checks were only formed on the two timbers. The value of the case hardenings was investigated that the ranges 3.7% to 9.1% for Red pine. In case of Korean pine, on the other hand, the case hardenings presence a few as 20.9% to 35.8%.

Studies for Processing Condition Optimization and Physicochemical Property of Resistant Starch (난소화성 전분 제조공정의 최적화 및 이화학적 특성 연구)

  • 한명륜;김우경;강남이;이수정;김명환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1193-1199
    • /
    • 2003
  • As a result of resistant starch yield depending on heating temperature, moisture content, storage temperature and heating-cooling cycle with RSM (response surface methodology), high amylose corn starch (46%) was appeared higher than normal corn starch in the yield (22%). At the high amylose corn starch, optimum conditions for resistant starch formation were 6 times of heating-cooling cycle, 108$^{\circ}C$ heating temperature and 67% moisture content at the 2$0^{\circ}C$ storage temperature, which resulted in 25% yield with these experiment conditions. Affecting factor for the resistant starch formation was arranged according to heating -cooling cycle, moisture content, heating temperature and storage temperature. Raw corn starch granule was destructive and appeared a porous reticular structure by the resistant starch formation. Color became dark and increased yellowness by caramelization during heating processing. Heating-cooling processing was the result of decreased hardness, cohesiveness, springiness and gumminess.

Moisture Content Change of Korean Red Pine Logs During Air Drying: II. Prediction of Moisture Content Change of Korean Red Pine Logs under Different Air Drying Conditions (소나무 원목의 천연건조 중 함수율 변화: II. 소나무 원목의 천연건조 중 함수율 변화 예측)

  • HAN, Yeonjung;CHANG, Yoon-Seong;EOM, Chang-Deuk;LEE, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.732-750
    • /
    • 2019
  • Air drying was carried out on 15 Korean red pine logs to provide a prediction model of the moisture content (MC) change in the wood during drying. The final MC was 17.4% after 880 days since the beginning of air drying in the summer for 6 Korean red pine logs with 68.7% initial MC. The final MC was 16.0% after 760 days since the beginning of air drying in the winter for 9 Korean red pine logs with 35.8% initial MC. A regression model with R-squared of 0.925 was obtained as a result of multiple regression analyses with initial MC, top diameter, temperature, relative humidity, and wind speed as independent variable and and MC change during air drying as dependent variable. The initial MC and top diameter, which is the characteristic of Korean red pine, have greater effect on the MC decrease during air drying compared to meteorological factors such as the temperature, relative humidity, and wind speed. Two-dimensional mass transfer analysis was performed to predict the MC distribution of Korean red pine logs during air drying. Two prediction models with different air drying days and different meteorological factors for the determination of the diffusion coefficient and surface emission coefficient were presented. The error between the different two methods ranged from 0.1 to 0.8% and the difference from the measured value ranged from 2.2 to 3.6%. By measuring the internal MC during air drying of Korean pine logs with various initial MC and diameter, and calculating the moisture transfer coefficient in wood for each meteorological condition, the error of the prediction model can be reduced.

A Study on the Growth Characteristics of Native Plants by Seeding Amounts of Cool-season Turfgrasses on the Disturbed Slope (훼손비탈면의 한지형 잔디 파종량에 따른 자생식물의 생육특성에 관한 연구)

  • Kim, Jae-Hwan;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.5
    • /
    • pp.1-12
    • /
    • 2009
  • This research was initiated to investigate the revegetation characteristics under the seeding amount treatments of cool-season turfgrasses on the disturbed slope. 4 different seeding amounts of cool-season turfgrasses (0.0 $g/m^2$, 1.5 $g/m^2$, 3.0 $g/m^2$, 6.0 $g/m^2$) with the same seeding amounts of native woody (Rhus chinensis, Albizzia julibrissin) and herbaceous plants (Lotus corniculatus var. japonicus, Dianthus sinensis, Aster yomena) were treated with 3 replications on the experimental disturbed slope. Data such as soil hardness (mm), moisture content (%), surface coverage rate (%), the number of each germinating plant and plant height were analyzed. There were no statistic differences observed in the soil hardness and the soil moisture content while a significant difference was observed in the surface coverage rates. The surface coverage rates were higher in 3.0 $g/m^2$ and 6.0 $g/m^2$ plots compared to the rest two plots of cool-season turfgrasses. However, the emergence of native woody and herbaceous plants was relatively low in 3.0 $g/m^2$ and 6.0 $g/m^2$ plots of high seeding amounts of cool-season turfgrasses. This result indicated that high seeding amounts of cool-season turfgrasses could decrease the emergence of native woody and herbaceous plants. We concluded that 1.5 g~3.0 $g/m^2$ seeding amounts of cool-season turfgrasses was optimum level for the balanced emergence of cool-season turfgrasses, native woody and herbaceous plants in the viewpoint of the ecological disturbed slope revegetation.

Milling Characteristics of Milled Rice According to Milling Ratio of Friction and Abrasive Milling (마찰과 연삭 도정배분에 의한 쌀의 도정특성)

  • Kim, Hoon;Kim, Dong-Chul;Lee, Se-Eun;Kim, Oui-Woung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.439-445
    • /
    • 2009
  • This study was performed to investigate the optimum abrasive and friction milling ratio. This was accomplished by determining changes in the quality, such as whiteness, moisture content, broken kernel, unstripped embryo rate, and surface characteristics or milling difference, during an abrasive and friction based milling process. When only abrasive was milled, the increase of whiteness was fast in the first milling, whereas the increasing rate of whiteness was small in the latter milling. The decreasing rate of moisture content and broken kernel increased as the friction milling ratio was increased. Combining with the friction milling was considered a suitable method because the unstripped embryo rate was high only when abrasive milling was used. In the case of a high abrasive milling ratio, a significant milling difference was observed in the initial milling. This indicated that the milling difference was not completely eliminated despite using friction milling in the latter milling. Consequently, it was necessary to minimize the milling difference in the initial milling. When milling quality was synthetically considered, the abrasive milling ratio was varied from 20~50%. When the abrasive milling ratio was greater than 40%, the external quality of the rice milled deteriorated since holes and defects generated on the surface in the initial milling were not removed. Due to this deterioration in surface characteristics, an abrasive milling ratio of 30% was identified as a suitable level.

Extrusion-cooking Using Twin-screw Extruder on Cordyceps Pruinosa (이축 압출 성형기를 이용한 붉은자루 동충하초의 압출 성형)

  • Kim D. E.;Sung J. M.;Kang W. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.8-16
    • /
    • 2005
  • The extrusion-cooking condition on Cordyceps pruinosa was designed using twin-screw extruder. Response surface methodology (RSM) was used to investigate extrusion-cooking using a central composition design with varying die temperature $(114-146^{\circ}C)$, feed moisture $(22-38\%)$, feed rate (4-14 ka/h) and screw speed (120-280 rpm). System parameters (die pressure and specific mechanical energy (SME)) and extrudate parameters (density and water solubility index (WSI)) were statically analyzed using RSH. Die pressure was significantly affected by temperature, moisture contents and feed rate. SM was affected by screw speed and feed rate. When die temperature is $130^{\circ}C$ and moisture content $25\%$, the optimum pressure is shown. SME is about 20 Wh/kg, when feed rate is $10\~12kg/min$ and screw speed $200\~250rpm$. WSI was affected by temperature and moisture contents. Density was not affected by any factor. WSI increases by $7\%$ from about $23\%$ to about $30\%$, as temperature is raised from $120^{\circ}C\;to\;140^{\circ}C$. The WSI of Cordyceps pruinosa pulverized after extruding (PE) is about $26.97\%$ higher than that of raw material and $10\%$ higher than that of pulverized after drying (PD). The content of unsaturated fatty acid were not significantly different in PD and PE. Anti-oxidative activity of PE was 1.67-2.2 times higher than that of PD in Cordyceps pruinosa using 1- dipheny1-2-picrylhydrazyl method (DPPH).