• Title/Summary/Keyword: surface moisture

Search Result 1,411, Processing Time 0.027 seconds

Soil Evaporation Evaluation Using Soil Moisture Measurements at a Hillslope on a Mountainous Forest (산림 사면에서 실측 토양수분을 이용한 토양증발평가)

  • Gwak, Yong-Seok;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.557-568
    • /
    • 2012
  • In order to understand the hydrological processes on the mountainous forest, the configuration of soil evaporation (E) out of evapotranspiration (ET) is a challenging and important topic. In this study, we attempted to understand the soil evaporation process for a humid forest hillslope via measuring and analyzing soil moistures with a sampling interval in 2 hours at three locations for 10 days between May 22th and 31th 2009. Two methods were used to estimate soil evaporation in every 2hr; one is a method using soil moisture measurement ($E_{SM}$), the others methods are based on Penman equation (Penman (1948), Staple (1974), Konukcu (2007), Equilibrium Penman ($E_{equili}$)). As a critical parameter in determining $E_{SM}$, the dry surface layer (DSL), was estimated using energy balance equation. The accumulated soil evaporation ($E_{SM}$) of A, B, C points were estimated as 2.09, 1.08 and 2.88 mm, respectively. The estimated evaporation of Penman (1948), Staple (1974), Konukcu (2007), $E_{equili}$ were 4.91, 8.80, 8.63 and 3.28 mm. The proposed method with soil moisture measurement showed lower soil evaporations than the other conventional methods. The increasing soil temperature and interaction between soil and atmosphere due to existence of litter and DSL are considered as dominant factors for soil evaporation. The $E_{SM}$ has the apparent lag time between 2 and 4 hr compared with $E_{equili}$ and net radiation. The DSL and surface resistance ($r_s$) were increased as soil moisture was decreased for in this study. The estimated DSL through the temporal distribution analysis of soil moisture and tension measurements was also similar to that of the energy balance relationship.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.

Moisture Absorption Properties of Organic-Inorganic Nano Composites According to the Change of Epoxy Resins for Next Generation Semiconductor Packaging Materials (차세대 반도체용 유-무기 나노 복합재료의 에폭시 수지변화에 따른 흡습특성)

  • Kim, Whan Gun;Kim, Dong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Epoxy resins are widely used in microelectronics packaging such as printed circuit board and encapsulating for semiconductor manufacturing. Water can diffuse into and through the epoxy matrix systems and moisture absorption at boarding interfaces of matrix resin systems can lead to a hydrolysis at the interfaces resulting in delamination of encapsulating materials. In the study, the changes of diffusion coefficient and moisture content ratio of epoxy resin systems with nano-sized fillers according to the change of liquid type epoxy resins were investigated. RE-304S, RE-310S, RE-810NM and HP-4032D as a epoxy resin, Kayahard AA as a hardener, and 1B2MI as a catalyst were used in these epoxy resin systems. After curing, moisture content ratios were measured with time under the 85 and 85% relative humidity condition using a thermo-hydrostat. The maximum moisture absorption ratio and diffusion coefficient of EMC decrease with the filler content. It can be seen that these decreases are due to the increase of filler surface area and the decrease of moisture through channel with the content of nano-sized filler.

Mechanical Tenacity Analysis of Moisture Barrier Bags for Semiconductor Packages

  • Kim, Keun-Soo;Kim, Tae-Seong;Min Yoo;Yoo, Hee-Yeoul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • We have been using Moisture Barrier Bags for dry packing of semiconductor packages to prevent moisture from absorbing during shipping. Moisture barrier bag material is required to be waterproof, vapor proof and offer superior ESD (Electro-static discharge) and EMI shielding. Also, the bag should be formed easily to the shape of products for vacuum packing while providing excellent puncture resistance and offer very low gas & moisture permeation. There are some problems like pinholes and punctured bags after sealing and before the surface mount process. This failure may easily result in package pop corn crack during board mounting. The bags should be developed to meet the requirements of excellent electrical and physical properties by means of optimization of their raw material composition and their thickness. This study investigates the performance of moisture barrier bags by characterization of their mechanical endurance, tensile strength and through thermal analysis. By this study, we arrived at a robust material composition (polyester/Aluminate) for better packing.

  • PDF

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Effect of Leaf Dehydration Process and Air Flow Capacity of Curing Facility on Physical Properties and Composition of Leaves During Flue-curing (황색종 연초 건조중 탈수경과 및 풍속차가 건조엽의 특성에 미치는 영향)

  • Ryu, Myong-Hyun;Seok, Yeong-Seon;Lee, Un-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.9-15
    • /
    • 1983
  • The effect of leaf dehydration process and air flow capacity of bulk curing on physical properties and composition of cured leaves was studied, respectively, during flue- curing. Cured leaves from excessive moisture during yellowing stage and those from rapid dehydration Process inevitably during later stages, tend towards lower equilibrium moisture contents, higher shatter index, hither protein nitrogen, and leaf scalding or deterioration of Beaves with redish cast. Early dehydration at the yellowing stage re suited in increasing of p Bamitic, stearic, linoleic, and linolenic acid contents, but showed reduction of brightness difference between upper and lower surface of the cured leaves, Leaf surface lipid decreased with the progress of curing stages, more conspicuously during later stage. Lowering air flow capacity of fan by 50oye during stem drying stage resulted in increasing of leaf surface lipid and 25oye decreasing of electric power consumption , but curing period and kerosene consumption were not affected.

  • PDF

Effects of climate condition on concrete slab with modified-latex (외기조건이 개질된 라텍스 혼입콘크리트 슬래브 표면에 미치는 영향)

  • Cha, Hun;Kim, Dae-Geon;Choi, Sang-Hwan;Moon, Kyeong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.7-8
    • /
    • 2014
  • Latex-modified concrete using ready mix concrete (R-LMC) was developed for application of building construction project (specifically, the rooftop of a parking garage unable to use heavy equipments for bridge deck overlay) due to three major outstanding properties of R-LMC; bond strength, resistance of cracks at early age, and resistance of freezing and thawing. However, R-LMC at the placement stage is required to be sufficiently cured because R-LMC is very sensitive to rate of evaporation of surface moisture. This study focused on effects of different curing methods and climate condition on cracks on the surface of hardened R-LMC considering the chart of rate of evaporation of surface moisture from concrete provided by American Concrete Institute in manual for placement of latex modified concrete.

  • PDF

Hygroscopicity and Surface Hardness of Domestic Wood Heat-Treated at $220^{\circ}C$

  • Kang, Ho-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.4
    • /
    • pp.229-234
    • /
    • 2008
  • In a previous study, it was revealed that three major softwoods, Japanese pine, Korean pine and Japanese larch, heat-treated at $220^{\circ}C$, could produce high quality dark-colored boards. It is known that heat treatment decreases the hygroscopicity of wood. The hygroscopicity of major domestic softwoods and hardwoods heat-treated at $220^{\circ}C$ was investigated by a saturated salt solution method and compared with that of black and white charcoals. Equilibrium moisture contents of wood decreased with the increase of heat treatment time. Isotherm shapes of wood species were different from those of charcoals. Heat treatment decreases the equilibrium moisture contents of black locust more than those of Korean pine and Japanese larch. It was found that surface hardness of wood is improved by heat treatment to a certain extent, but a longer heat treatment causes thermal degradation, resulting in the decrease of the surface hardness.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.459-463
    • /
    • 2006
  • For the purpose of developing liner board for water-resistant corrugated board in the cold chain system, several types of base paper for corrugated board were purchased from the market and 6 different boards were produced in the paperboard mill by applying the chemicals on the base paper. Then, water-moisture resistant performance and physical properties of the boards were evaluated and compared each other. The liner board which is dried at high temperature with pressure by the Condebelt showed a superior performance in strength over conventional liner boards. Strength of the board increased by surface chemical treatment up to 60% of compressive strength and 30% of bursting strength. Starch insolubilization with Ammonium-Zirconium -Carbonate and surface coating with a surface size and a moisture resistant chemical on CK paper showed the best result. Therefore, this method was recommended to produce the outer liner board for water -resistant corrugated board.

  • PDF

Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites (국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석)

  • Kim, Hyeri;Hong, Je-Woo;Lim, Yoon-Jin;Hong, Jinkyu;Shin, Seung-Sook;Kim, Yun-Jae
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.355-365
    • /
    • 2019
  • Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.