• Title/Summary/Keyword: surface modulus

Search Result 681, Processing Time 0.04 seconds

The mechanical properties of 3D printed denture base resin incorporating essential oil microcapsules

  • Steve An;Jane Lesleigh Evans;Stephen Hamlet;Robert Matthew Love
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.4
    • /
    • pp.189-201
    • /
    • 2023
  • PURPOSE. The aim of this study was to investigate the mechanical properties of three-dimensional (3D) printed denture base resin incorporating microcapsules containing plant essential oils. MATERIALS AND METHODS. Denture base specimens containing up to 3% w/v essential oil microcapsule powders (MCPs), i.e., eucalyptus, geranium, lavender, menthol, and tea tree, in two resins (Detax and NextDent 3D+) were 3D printed using two printers (Asiga and NextDent 5100). The dispersion and interaction of the MCPs in the resin were assessed by SEM while the mechanical properties of the incorporated denture base including flexural strength (MPa), flexural modulus (MPa), Vickers hardness (VHN), and surface roughness (Ra) were also subsequently evaluated. Statistical analysis of any differences in mean values was determined using a two-way ANOVA with Tukey's post hoc testing (α = .05). RESULTS. The spherical shape of the MCPs was maintained during the mixing and polymerization/printing process. However, the Detax-Asiga group showed significant agglomeration of the MCPs even at the lowest MCP concentration levels (0.5% w/v). Overall, as the microcapsule concentration increased, the mean flexural strength decreased, though the menthol MCP groups remained compliant with the ISO standard. The flexural modulus and harness remained relatively unchanged, and the flexural modulus complied with the ISO standard regardless of the MCP concentration. Surface roughness increased with the addition of the MCPs but also remained below that required for clinical acceptance. CONCLUSION. Incorporation of microencapsulated plant essential oils into 3D printed denture base resin was successfully achieved. While incorporation negatively influenced flexural strength and surface roughness, little effect on flexural modulus and Vickers hardness was demonstrated.

Damage Tolerance in Hardly Coated Layer Structure with Modest Elastic Modulus Mismatch

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1638-1649
    • /
    • 2003
  • A study is made on the characterization of damage tolerance by spherical indentation in hardly coated layer structure with modest elastic modulus mismatch. A hard silicon nitride is prepared for the coating material and silicon nitride with 5wt% of boron nitride composites for underlayer. Hot pressing to eliminate the effect of interface delamination during the fracture makes strong interfacial bonding. The elastic modulus mismatch between the layers is not only large enough to suppress the surface crack initiation from the coating layer but sufficiently small to prevent the initiation of radial crack from the interface. The strength degradation of the layer structure after sphere contact indentation does not significantly occur, while the degradation of silicon nitride-boron nitride composite is critical at a high load and high number of contacts.

Papyrus reinforced poly(L-lactic acid) composite

  • Nishino, Takashi;Hirao, Koichi;Kotera, Masaru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2007
  • Mechanical reinforcement of an all-sustainable composite, composed of papyrus stem-milled particles as reinforcement and poly-L-lactic acid (PLLA) resin as matrix, was investigated. The papyrus particles (average diameter of $70{\mu}m$) could be well dispersed in PLLA resin up to 50 wt% without any surface modification. Young's modulus of the composite was 4.2 GPa at 50 wt% of the papyrus content. This is a two-fold increment in modulus as compared to that of the PLLA matrix. The tensile strength of the composite was almost constant around 48 MPa irrespective of the papyrus content. Temperature dependence of the storage modulus demonstrated that the incorporation of papyrus restricts the large drop in the modulus above the glass transition of PLLA.

Development of a Three Dimensional Modulus of Rupture Test (순수 등방성 휨인장강도 시험법 개발)

  • Zi, Goang-Seup;Oh, Hong-Seub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.399-402
    • /
    • 2007
  • The classical two dimensional modulus of rupture test was generalized to three dimensions. Using this new method, the biaxial tensile strength can be measured with only one actuator. A circular plate is used in this method unlike a prismatic beam in the classical modulus of rupture test. The stress field in this specimen is isotropic and uniform in a plane paralle1 to the bottom surface of the specimen. The relation between the applied load and the maximum stress is derived analytical1y using Timoshenko's solution. A set of experimental data is presented.

  • PDF

Statistical models for mechanical properties of UHPC using response surface methodology

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.667-675
    • /
    • 2017
  • One of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.

Properties of Carbon Black/SBR Rubber Composites Filled by Surface Modified Carbon Blacks

  • Dai, Shuang-Ye;Ao, Ge-You;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • Properties of carbon blacks and carbon black/SBR rubber composites filled by surface modified carbon blacks were examined. Although the specific surface area of carbon blacks increased after the surface modifications with heat, acid, and base, there were no obvious changes in resistivity. The composites filled by heat treated carbon blacks showed a higher tensile strength and elongation than those filled by raw blacks. The acid and base treated carbon blacks filled composites also showed higher tensile strength but similar elongation values with those filled by raw blacks. With increasing loading ratio, both tensile strength and elongation increased, and appeared a maximum value at 30-40 phr. Modulus at 300% strain remained increasing with further loading of carbon blacks. At the same loading, the heat treated black filled composites showed similar modulus values with composites filled by raw blacks but for base and acid treated black filled composites much higher values were obtained. After the surface modification, the functional groups which played an important role in reinforcement action were changed.

Effects of ta-C Coatings on Surface Characteristics of Dental Ni-Ti Files (치과용 Ni-Ti파일의 표면특성에 미치는 ta-C코팅효과)

  • Sun-Kyun Park;Han-Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.368-376
    • /
    • 2023
  • Dental Ni-Ti files must ensure stability and resistance to fatigue fracture. DLC and ta-C were coated to remove defects on the surface and ensure stability, and the surface characteristics were investigated. When coated with DLC, it was black, and in case of ta-C coating, it was blue-black. Scratches, which are defects caused by mechanical processing, were formed on the surface of the un-coated Ni-Ti file from the end of the file along the direction of processing, with the Pro-file appearing in the vertical direction and the K-file appearing in the file direction. Scratches were reduced on the coated surface, and the surface roughness was greatly reduced after coating compared to before coating. The un-coated Ni-Ti file had the lowest hardness, the DLC-coated file had the highest hardness, and ta-C showed relatively high hardness. The elastic modulus of the DLC coating film was high, and the ta-C elastic modulus was low. The adhesion of the DLC coating film tended to be higher than that of ta-C, and the wear loss amount of DLC coating of taC was lower. The corrosion potential of the ta-C coating increased significantly, and the corrosion current density decreased.

Studies on the Development of TiAIN/CrN Multi-layered Thin Films by Unbalanced Magnetron Sputtering Process (비대칭 스퍼터링에 의한 TiAIN/CrN 나노 다층 박막의 합성 및 특성 분석에 관한 연구)

  • Kim, Gwang-Seok;Kim, Bom-Sok;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.207-211
    • /
    • 2005
  • In this work a multi-layered nanostructured TiAIN/CrN superlattice coatings was synthesized using closed-field unbalanced magnetron sputtering method and the relationships between their superlattice period (1), micro-structure, hardness and elastic modulus were investigated. In addition, wear test at $500^{\circ}C$ and oxidation resistance test at $900^{\circ}C$ were performed to investigate high temperature properties of these thin films. The coatings were characterized in terms of microstructure and mechanical properties by transmission electron microscopy (TEM) and nano-indentation test. Results from TEM analysis showed that superlattice periods was inversely proportional to the jig rotation speed. The maximum hardness and elastic modulus of 37 GPa and 375 GPa were observed at superalttice period of 6.1 nm and 4.4 nm, respectively. An higher value of microhardness from TiAIN/CrN thin films than either TiAIN (30 GPa) or CrN (26 GPa) was noted while the elastic modulus was approximately an average of TiAIN and CrN films. These enhancement effects in superlattice films could be attributed to the resistance to dislocation glide across interface between the CrN and TiAIN layers. Much improved plastic deformation resistance ($H^3/E^2$) of 0.36 from TiAIN/CrN coatings was observed, compared with 0.15 and 0.16 from TiAIN and CrN, respectively. Also the wear resistance at $500^{\circ}C$ was largely increased than those of single TiAIN and CrN coatings and TiAIN/CrN coatings showed much reduced weight gain after exposure at $900^{\circ}C$ for 20 hours.

Evaluation of Concrete Freeze and Thaw Resistance by Measuring Surface Rebound Value and Relative Dynamic Modulus of Elasticity (반발경도와 상대동탄성계수 측정에 의한 콘크리트 동결융해 성능평가 비교연구)

  • Park, Ji-Sun;Ahan, Ki-Hong;You, Young-Jun;Lee, Jong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.419-424
    • /
    • 2021
  • This study investigated the possibility of early determination of frost damage on the concrete surface by using the rebound hardness method, widely used for estimation the compressive strength of concrete on the site. For this purpose, the surface damage of concrete was compared by measuring the rebound hardness and the relative dynamic modulus of the concrete for the multi-sided and single sided concrete surface exposed to freeze and thaw condition. Compared to the resonance vibration method, the rebound hardness method was able to show the frost damage 150 cycles quicker for the single-sided exposed concrete specimen and 50 cycles quicker for the multi-sided exposed concrete specimen. Therefore, it is considered that the rebound hardness method can determine the concrete surface damage more quickly than that of the resonance vibration method.

RF Magnetron Sputter로 증착 한 HfN 박막의 Plasma Power 변화에 따른 Nano-electroribology 특성 변화 연구

  • Park, Myeong-Jun;Kim, Seong-Jun;Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.354.2-354.2
    • /
    • 2014
  • 최근 반도체 산업의 발전에 따라 반도체 소자 내 배선재료로 사용되던 Aluminium (Al)의 대체물로 Copper (Cu)가 사용되고 있다. Cu는 Al보다 우수한 전도성과 비용이 저렴하다는 장점이 있으나 반도체 기판과의 확산으로 이를 해결해야만 하는 문제점이 있다. 이는 Si와 Cu사이에 확산방지막을 사용하여 해결할 수 있는데 Hafnium Nitride (HfN) 박막은 다른 물질과 비교해 고온에서의 안정성과 낮은 비저항을 가지고 있어 주목을 받고 있다. 본 연구에서는 rf magnetron sputter 방법으로 박막 증착 시에 인가하는 rf power가 박막의 표면 특성에 어떠한 영향을 미치는지 nano-indenter를 사용해 surface hardness와 elastic modulus의 변화를 중심으로 알아보았다. 시료는 rf magnetron sputter로 증착 시 인가하는 plasma power를 60W와 80W로 달리하여 증착하였다. 증착가스는 Ar과 $N_2$를 조절하여 사용하였고 총 유량을 40 sccm 으로 고정하였으며, 이 때 압력은 3mTorr로 유지하였다. 실험결과 plasma power를 80W로 인가하여 증착한 시료의 surface hardness (18.48 GPa)가 60W로 증착한 시료의 surface hardness (12.03 GPa)보다 큰 값을 나타내었다. 이와 마찬가지로 80W로 증착한 시료의 elastic modulus(187.16 GPa)도 60W로 증착한 시료의 탄성계수 (141.15 GPa)보다 큰 값을 나타내었다. 이는 증착 시 인가하는 plasma power의 크기가 증가하면 박막표면에 compressive stress가 생성되어 박막의 surface hardness와 elastic modulus가 상대적으로 높게 측정되는 것으로 생각된다.

  • PDF