• 제목/요약/키워드: surface magnetism

검색결과 82건 처리시간 0.03초

Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer

  • Park, Sang-Eun;Lee, Jea-Won;Haam, Seung-Joo;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.869-872
    • /
    • 2009
  • Double-doped magnetic particles that incorporated magnetites into both the surface and inside the silica cores were fabricated via the sol-gel reaction of citrate-stabilized magnetites with silicon alkoxide. Double-doped magnetic particles were easily fabricated and exhibited an higher magnetism in comparison to the singledoped magnetic particles that were prepared by the erosion of surface-deposited magneties from double-doped magentic particles. Thin gold layer was formed over magnetic silica nanospheres via nanoseed-mediated growth of gold clusters. The plasmon-derived absorption bands of double-doped magnetic silica-gold nanoshells were more broadened and shifted down by ca. 20 nm as compared to those of single-doped magnetic silicagold nanoshells, which were attributed to not only the surface scattering of incident light due to relatively rough surafce morphology, but also heterogeneous permittivity of dielectric cores due to surface-deposited magnetites.

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

AN INVERSION METHOD FOR DERIVING PHYSICAL PROPERTIES OF A SUBSURFACE MAGNETIC FIELD FROM SURFACE MAGNETIC FIELD EVOLUTION I. APPLICATION TO SIMULATED DATA

  • Magara, Tetsuya
    • Journal of The Korean Astronomical Society
    • /
    • 제50권6호
    • /
    • pp.179-184
    • /
    • 2017
  • We present a new method for solving an inverse problem of flux emergence which transports subsurface magnetic flux from an inaccessible interior to the surface where magnetic structures may be observed to form, such as solar active regions. To make a quantitative evaluation of magnetic structures having various characteristics, we derive physical properties of subsurface magnetic field that characterize those structures formed through flux emergence. The derivation is performed by inversion from an evolutionary relation between two observables obtained at the surface, emerged magnetic flux and injected magnetic helicity, the former of which provides scale information while the latter represents the configuration of magnetic field.

Magnetism of Nanocomposite Quartz Powder by use of MCR Method

  • Soh, Deawha;Lim, Byoungjae;Soh, Hyunjun;Mofa, N.N.;Ketegenov, T.A.;Mansurov, Z.A.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2004년도 SMICS 2004 International Symposium on Maritime and Communication Sciences
    • /
    • pp.113-116
    • /
    • 2004
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 10~50 nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was also confirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed. The magnetic permeability of the sample was decreasing within first two months down by 15~20 %. Then, the magnetic characteristics were almost stabilized steadily and continuously. The observed changes were related with defective structure of the particles, elastic stress relief, and changes of electron density and magnetic moment in deformation zones. This process of stabilization of the investigated properties could be intensified by the thermal annealing heat treatment in short time period of the nano-composite quartz powders at the temperature ranges of 100~15$0^{\circ}C$.

  • PDF

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study (Co2TiSn(001) 표면의 자성 및 반쪽금속성에 대한 제일원리연구)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • 제18권4호
    • /
    • pp.131-135
    • /
    • 2008
  • The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).

HALF-TURN ROTATION OF A POLARITY INVERSION LINE AND ASSOCIATED QUADRUPOLAR-LIKE STRUCTURE IN THE SUN

  • Magara, Tetsuya;An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye
    • Journal of The Korean Astronomical Society
    • /
    • 제44권5호
    • /
    • pp.143-150
    • /
    • 2011
  • This paper reports a characteristic motion of a polarity inversion line (PIL) formed at the solar surface, which is newly found by performing a three-dimensional magnetohydrodynamic simulation of flux emergence in the Sun. A magnetic flux tube composed of twisted field lines is assumed to emerge below the surface, forming a bipolar region with a PIL at the surface. A key finding is the successive half-turn rotation of the PIL, leading to the formation of a quadrupolar-like region at the surface and a magnetic configuration in the corona; this configuration is reminiscent of, but essentially different from the so-called inverse-polarity configuration of a filament magnetic field. We discuss a physical mechanism for producing the half-turn rotation of a PIL, which gives new insights into the magnetic structure formed via flux emergence. This presents a reasonable explanation of the configuration of a filament magnetic field suggested by observations.

Magnetic Properties of Activated Quartz Nanocomposite

  • N.N., Mofa;T.A., Ketegenov;Z.A., Mansurov;Soh, Hyun-Jun;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • 제78호
    • /
    • pp.9-15
    • /
    • 2007
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 1050nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was alsoconfirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed.

Process Design, Fabrication, and Evaluation of Cold Drawn SUS304N Coil Wedge (SUS304N 코일 웨지 인발 공정의 설계, 제조 및 평가)

  • Jung, J.E.;Kim, S.J.;Bae, S.;Namkung, J.;Kim, S.M.;Kim, S.I.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • 제28권4호
    • /
    • pp.212-218
    • /
    • 2019
  • In this study, the first drawing die for the production of coil wedge is redesigned in order to enhance properties such as dimensional accuracy, dimensional uniformity, non-magnetism, and residual stress. The equivalent strain distribution is observed to be asymmetric at certain corners of the product and un-filling of material is also observed at the same location, based on the results of FEM simulation for the current drawing process. Additionally, a relatively huge amount of deformation is concentrated on the surface of the reference product leading to an increase in magnetic component and surface residual stress. After re-designing the cross-section of the first drawing step process conformed to relatively higher amount of reduction ratio, reduction of both surface residual stress and the volume fraction of magnetic component could be achieved for the finally-drawn coil wedge product.

Electronic Structure and Magnetism of Ni Monolyer Embedded Between Rh Layers (Ni 단층이 삽입된 Rh 박막의 전자구조와 자성)

  • Kim Sun-Hee;Jang Y.R.;Lee J.I.
    • Journal of the Korean Magnetics Society
    • /
    • 제15권1호
    • /
    • pp.7-11
    • /
    • 2005
  • A single slab in which one Ni(001) atom layer embedded between two of four Rh layers is considered to examine the oscillation of magnetic moment in each layer. The all electron total-energy full-potential linearized augmented plane wave(FLAPW) method was used to calculate the spin densities, magnetic moments, density of states(DOS), and the number of electrons within each muffin-tin(MT) sphere. The magnetic moment of the center layer Ni(C) in the system of 4Rh/Ni/4Rh is calculated to be 0.34${\mu}_B$, which is 40% have magnetic moment at the interface layers by strong band hybridization with Ni(C) when Ni(001) monolayers is inserted, and the magnetic moment shows a damped oscillation as we go from center Ni(C) layer to the surface Rh(S). From the calculated density of states, it is found that the Fermi level shifts inside the energy band of the Ni(C) in affection of Rh(001).

Magnetism of Fe Monolayers on Nonmagnetic fcc Transition Metal (Cu, Rh, Pd, and Ag) (001) Surfaces (면심입방 금속(Cu, Rh, Pd, Ag) (001) 표면 위의 철 단층의 자성)

  • Yun, Won-Seok;Cha, Gi-Beom;Rho, Tae-Hwan;Han, Dong-Ho;Hong, Soon-Cheol
    • Journal of the Korean Magnetics Society
    • /
    • 제19권5호
    • /
    • pp.165-170
    • /
    • 2009
  • It is well-known that a meta-stable fcc bulk Fe has an antiferromagnetic (AFM) ground state and could be synthesized by growing Fe on a proper fcc metal substrate. In this study magnetism of Fe monolayers on nonmagnetic fcc transition metal (Cu, Rh, Pd, and Ag) (001) surfaces has been investigated using the all-electron full-potential linearized augmented plane wave method. The Fe monolayers on Rh(001) and Pd(001) surfaces were calculated to be stabilized in an AFM state, whereas the Fe monlayers on Cu(001) and Ag(001) surfaces are stabilized in a ferromagnetic (FM) state. Noting that Cu and Ag have the smallest and largest lattice constants and the fcc bulk Fe with a larger lattice constant is getting stabilized in a ferromagnetic state, it is unexpectable and interesting. The calculated magnetic moments of the Fe atoms on Cu, Rh, Pd, and Ag(001) surfaces are 2.811, 2.945, 2.987, and 2.990 $_{{\mu}B}$ in FM states and 2.624, 2.879, 2.922, and 3.001 $_{{\mu}B}$ in AFM states.