• Title/Summary/Keyword: surface localization

Search Result 197, Processing Time 0.025 seconds

Building Extraction from Lidar Data and Aerial Imagery using Domain Knowledge about Building Structures

  • Seo, Su-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2007
  • Traditionally, aerial images have been used as main sources for compiling topographic maps. In recent years, lidar data has been exploited as another type of mapping data. Regarding their performances, aerial imagery has the ability to delineate object boundaries but omits much of these boundaries during feature extraction. Lidar provides direct information about heights of object surfaces but have limitations with respect to boundary localization. Considering the characteristics of the sensors, this paper proposes an approach to extracting buildings from lidar and aerial imagery, which is based on the complementary characteristics of optical and range sensors. For detecting building regions, relationships among elevation contours are represented into directional graphs and searched for the contours corresponding to external boundaries of buildings. For generating building models, a wing model is proposed to assemble roof surface patches into a complete building model. Then, building models are projected and checked with features in aerial images. Experimental results show that the proposed approach provides an efficient and accurate way to extract building models.

Flexible inspection system using CAD detabase and vision guided coordinate measuring machine (3차원 측정기를이용한 Flexible Inspection System)

  • 조명우;박용길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.16-29
    • /
    • 1993
  • The objective of this research is in the development of a flexible 3-dimensional inspection system for the sculptured surface by integrating the Coordinate Measuring Machine (CMM), CAD database, and vision system. To achieve the proposed flexible inspection system, two research categories are discussed in the study: new inspection planning method includes a new measuring point selection method and various new probe path generation methods. The object recognition and localization process for the unknown surface can be easily carried out by introducing a new concept called "Z-Layer". The experimental results indicate that the developed flexible inspection system, with the proposed algorithm, can be inplemented in real situation.situation.

  • PDF

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF

Localization and Accumulated Concentration Changes of Mercury Compound in Reproductive Organs of Female Mice with Time (암컷 마우스 생식기관 내 수은 화합물의 위치와 시간에 따른 축적된 수은 농도 변화)

  • Kim, Young Eun;Kim, Yu Seon;Cho, Hyun Wook
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.811-818
    • /
    • 2018
  • This study was performed to investigate the localization and concentration changes of mercury compound in female reproductive organs with time. Methylmercuric chloride was subcutaneously injected weekly into pubescent female mice for 3 weeks. For the concentration changes of mercury with time, the mice were sacrificed at 10, 150, and 300 days post treatment (DPT). Body and organ weights were not significantly different between the control and mercury-treated groups, except for 10 DPT in body weight. Localization of accumulated mercury was identified by the autometallography method. Localization of mercury compounds in the uterus, ovary, and ovum was analyzed with a light microscope. In the uterus, mercury was densely located in the stroma cells and surface epithelium of the perimetrium at 10 DPT. Mercury concentration was decreased at 150 DPT and did not appear at 300 DPT. In the ovary, mercury particles were distributed in the stroma cells of the cortex region, cells of the theca around the follicle, and the corpus luteum at 10 DPT. Mercury was concentrated in the medulla region at 150 DPT and was not distributed at 300 DPT. In the ovum, mercury particles were mainly located in the marginal region at 10 and 150 DPT. Mercury concentration was decreased and evenly distributed at 300 DPT. These results suggest that hormone synthesis, implantation, and developing embryos will be affected by mercury compound in the female mouse.

Low-speed Impact Localization on a Stiffened Composite Structure Using Reference Data Method (기준신호 데이터를 이용한 보강된 복합재 구조물에서의 저속 충격위치 탐색)

  • Kim, Yoon-Young;Kim, Jin-Hyuk;Park, Yurim;Shrestha, Pratik;Kwon, Hee-Jung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Low-speed impact was localized on a stiffened composite structure, using 4 FBG sensors with 100 kHz-sampling rate interrogator and devised localization algorithm. The composite specimen consists of a main spar and several stringers, and the overall size of the specimen's surface is about $0.8{\times}1.2m$. Pre-stored reference data for 247 grid locations and 36 stiffener locations are gathered and used as comparison target for a random impact signal. The proposed algorithm uses the normalized cross-correlation method to compare the similarities of the two signals; the correlation results for each sensor's signal are multiplied by others, enabling mutual compensation. 20 verification points were successfully localized with a maximum error of 43.4 mm and an average error of 17.0 mm. For the same experimental setup, the performance of the proposed method is evaluated by reducing the number of sensors. It is revealed that the mutual compensation between the sensors is most effective in the case of a two sensor combination. For the sensor combination of FBG #1 and #2, the maximum localization error was 42.5 mm, with average error of 17.4 mm.

Underwater Target Localization Using the Interference Pattern of Broadband Spectrogram Estimated by Three Sensors (3개 센서의 광대역 신호 스펙트로그램에 나타나는 간섭패턴을 이용한 수중 표적의 위치 추정)

  • Kim, Se-Young;Chun, Seung-Yong;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • In this paper, we propose a moving target localization algorithm using acoustic spectrograms. A time-versus-frequency spectrogram provide a information of trajectory of the moving target in underwater. For a source at sufficiently long range from a receiver, broadband striation patterns seen in spectrogram represents the mutual interference between modes which reflected by surface and bottom. The slope of the maximum intensity striation is influenced by waveguide invariant parameter ${\beta}$ and distance between target and sensor. When more than two sensors are applied to measure the moving ship-radited noise, the slope and frequency of the maximum intensity striation are depend on distance between target and receiver. We assumed two sensors to fixed point then form a circle of apollonios which set of all points whose distances from two fixed points are in a constant ratio. In case of three sensors are applied, two circle form an intersection point so coordinates of this point can be estimated as a position of target. To evaluates a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program.

An Approach for Lactulose Production Using the CotX-Mediated Spore-Displayed β-Galactosidase as a Biocatalyst

  • Wang, He;Yang, Ruijin;Hua, Xiao;Zhang, Wenbin;Zhao, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1267-1277
    • /
    • 2016
  • Currently, enzymatic synthesis of lactulose, a synthetic prebiotic disaccharide, is commonly performed with glycosyl hydrolases. In this work, a new type of lactulose-producing biocatalyst was developed by displaying β-galactosidase from Bacillus stearothermophilus IAM11001 (Bs-β-Gal) on the surface of Bacillus subtilis 168 spores. Localization of β-Gal on the spore surface as a fusion to CotX was verified by western blot analysis, immunofluorescence microscopy, and flow cytometry. The optimum pH and temperature for the resulting spore-displayed β-Gal was 6.0 and 75℃, respectively. Under optimal conditions, it showed maximum activity of 0.42 U/mg spores (dry weight). Moreover, the spore-displayed CotX-β-Gal was employed as a whole cell biocatalyst to produce lactulose, yielding 8.8 g/l from 200 g/l lactose and 100 g/l fructose. Reusability tests showed that the spore-displayed CotX-β-Gal retained around 30.3% of its initial activity after eight successive conversion cycles. These results suggest that the CotX-mediated spore-displayed β-Gal may provide a promising strategy for lactulose production.

The Micro Coil Production through Research on the Additive Conditions of Electrochemical Metal 3D Printer (전기화학적 금속 3D 프린터의 적층 조건 연구를 통한 마이크로 코일 제작)

  • Kim, Young-Kuk;Kang, Donghwa;Kim, Sung-Bin;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.138-143
    • /
    • 2020
  • In this study, we produced a coil of micro-pattern that can be used for electromagnetic wave absorber, heating material, wireless charging, sensor, antenna, etc. by using electrochemical additive manufacturing method. Currently, it contains research contents for manufacturing a micro pattern coil having practicality through control of process control variables such as applied voltage, distance between electrode, and nozzle injection. Circulation of the electrolyte through the nozzle injection control can significantly contribute to improving the surface characteristics of the coil because of minimizing voltage fluctuations that may occur during the additive manufacturing process. In addition, by applying the pulse method in the application of voltage, the lamination characteristics of the plated body were improved, which showed that the formation of a fine line width plays an important role in the production of a micro pattern coil. By applying the pulse signal to the voltage application, the additive manufacturing characteristics of the produced product were improved, and it was shown that the formation of a fine line width plays an important role in the production of a micro pattern coil.

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.

Does mini-implant-supported rapid maxillary expansion cause less root resorption than traditional approaches? A micro-computed tomography study

  • Alcin, Rukiye;Malkoc, Siddik
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.241-249
    • /
    • 2021
  • Objective: This study aimed to evaluate the volume, amount, and localization of root resorption in the maxillary first premolars using micro-computed tomography (micro-CT) after expansion with four different rapid maxillary expansion (RME) appliances. Methods: In total, 20 patients who required RME and extraction of the maxillary first premolars were recruited for this study. The patients were divided into four groups according to the appliance used: mini-implant-supported hybrid RME appliance, hyrax RME appliance, acrylic-bonded RME appliance, and full-coverage RME appliance. The same activation protocol (one activation daily) was implemented in all groups. For each group, the left and right maxillary first premolars were scanned using micro-CT, and each root were divided into six regions. Resorption craters in the six regions were analyzed using special CTAn software for direct volumetric measurements. Data were statistically analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test with Bonferroni adjustment. Results: The hybrid expansion appliance resulted in the lowest volume of root resorption and the smallest number of craters (p < 0.001). In terms of overall root resorption, no significant difference was found among the other groups (p > 0.05). Resorption was greater on the buccal surface than on the lingual surface in all groups except the hybrid appliance group (p < 0.05). Conclusions: The findings of this study suggest that all expansion appliances cause root resorption, with resorption craters generally concentrated on the buccal surface. However, the mini-implant-supported hybrid RME appliance causes lesser root resorption than do other conventional appliances.