• Title/Summary/Keyword: surface integral

Search Result 537, Processing Time 0.025 seconds

An Analysis of Electromagnetic Field Scattering for the Dielectric Cylinders (유전체주의 전자장 산란 해석)

  • 박동희;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.2
    • /
    • pp.181-186
    • /
    • 1992
  • The scattering property of TMz illuminated perfectly conducting and dielectric cylinders of arbitrary cross section are analyzed by the boundary element techniques. The boundary element equations are formulated via Maxwell’s equations, weighted residual or Green’s theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by the boundary element integral equations. Once the surface fields are found, the scattered fields in from a perfectly conducting circular and elliptic cylinders, a dielectric circular and elliptic cylinders are numerically analyzed. A general computer program has been developed using the quadratic elements(higher order boundary elements) and the Gaussian quadrature.

  • PDF

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

Heat Transfer of a Two-Dimensional Jet Impinging on the Wall with Transverse Repeated Ribs of Square Cross-Section (四角리브를 갖는 傳熱面에 衝突하는 2次元 噴流의 熱傳達에 관한 硏究)

  • 김상필;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.214-221
    • /
    • 1987
  • The purpose of this study is augmentation of heat transfer without additional power in the case of rectangular air jet which impinges vertically on the heating surface. The experimental results are obtained heat transfer augmentation of a two-dimensional impinging jet using the surface roughness of transverse repeated-rib type. The integral average heat transfer coefficient of ribbed plate is about two times larger than that of flat plate. In order to supplement the information about the mechanism of heat transfer augmentation, the flow structure in the stagnation region is visually studied by using the smoke wire technique. The heat transfer augmentation is due to the effect of stretching of large scale vortex in the stagnation region.

Estimate of package crack reliabilities on the various parameters using taguchi's method (다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가)

  • Kwon, Yong-Su;Park, Sang-Sun;Park, Jae-Wan;Chai, Young-Suck;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.

RCS Analysis of Complex Structures Using Object Precision Method (Object Precision 방법을 이용한 복합 구조물의 RCS 해석)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.159-164
    • /
    • 2005
  • Monostatic RCS analysis of complex structures has been done with a combined method of physical and geometric optics, commonly applied to high frequency electromagnetic backscattering problems. In the analysis, the complex structure is modeled as a number of flat surfaces and the RCS of whole structure is calculated by summing RCS of each surface, which can be obtained from an analytical solution of flat surface phase integral derived from physical optics. The reflected and hidden surfaces are searched by an object precision method based on adaptive triangular beam method, which can take account for effects of multiple reflections and polarizations of electromagnetic wave. The validity of the presented RCS analysis method has been verified by comparing with exact solutions and measured data for various structures.

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

The XPS and SEM Evaluation of Various Technique for Cleansing and Decontamination of The Rough Surface Titanium Implants (수종의 방법으로 임프란트 표면 처치후 표면의 형태 및 성분 변화 분석에 관한 연구)

  • Kim, Sun-bong;Yim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.749-763
    • /
    • 2001
  • Osseointegrated titanium implants have become an integral therapy for the replacement of teeth lost. For dental implant materials, titanium, hydroxyapatite and alumina oxide have been used, which of them, titanium implants are in wide use today. Titanium is known for its high corrosion resistance and biocompatability, because of the high stability of oxide layer mainly consists of $TiO_2$. With the development of peri-implantitis, the implant surface is changed in surface topography and element composition. None of the treatments for cleaning and detoxification of implant surface is efficient to remove surface contamination from contaminated titanium implants to such extent that the original surface elemental composition. In this sights, the purpose of this study was to evaluate rough surface titanium implants by means of scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS) with respect to surface appearance and surface elemental composition. Moreover, it was also the aim to get the base for treatments of peri-implantitis. For the SEM and XPS study, rough surface titanium models were fabricated for control group. Six experimental groups were evaluated: 1) long-time room exposure, 2 ) air-powder abrasive cleaning for 1min, 3) burnishing in citric acid(pH1) for 1min, 4) burnishing in citric acid for 3min, 5) burnishing in tetracycline for 1min, 6) burnishing in tetracycline for 3min. All experimental treatments were followed by 1min of rinsing with distilled water. The results were as follows: 1. SEM observations of all experimental groups showed that any changes in surface topography were not detected when compared with control group. (750 X magnification) 2. XPS analysis showed that in all experimental groups, titanium and oxygen were increased and carbon was decreased, when compared with control group. 3. XPS analysis showed that the level of titanium, oxygen and carbon in the experimental group 3(citric acid treatment for 1min, followed by 1min of distilled water irrigation) reached to the level of control group. 4. XPS analysis showed that significant differences were not detected between the experimental group 1 and the other experimental groups except of experimental group 3. The Ti. level of experimental group 2, airpowder abrasive treatment for lmin followed by 1min of saline irrigation, was lower than the Ti. level of tetracycline treated groups, experimental group 5 and 6. From the result of this study, it may be concluded that the 1min of citric acid treatment followed by same time of rinsing with distilled water gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.

  • PDF