• 제목/요약/키워드: surface impregnation

검색결과 267건 처리시간 0.027초

표면 개질 활성탄 위 금속 염화물의 첨착에 의한 암모니아 흡착 성능의 향상 (Enhancement of Ammonia Adsorption Performance by Impregnation of Metal Chlorides on Surface-Modified Activated Carbon)

  • 송강;임정현;김철규;박천상;김영호
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.671-678
    • /
    • 2021
  • 암모니아의 흡착 성능을 향상할 목적으로 활성탄의 질산 처리 및 활성탄으로 금속 염화물의 첨착 효과를 연구하였다. 질산 처리에 의해 활성탄으로 하이드록시기 및 카르복실기와 같은 작용기들의 도입을 확인하였다. 이후 초음파 함침법을 사용하여 각 금속 염화물(NiCl2, MgCl2, CuCl2, MnCl2 또는 CoCl2)을 표면 개질 활성탄 위로 첨착하였다. 여러첨착된 활성탄들의 물리화학적 특성과 암모니아 흡착 성능을 관찰하였다. 금속 염화물은 초음파 처리에 의해 원활하게 분산되었으며 활성탄 표면 위에 고르게 분포되었다. 금속 염화물이 첨착된 표면 개질 활성탄은 감소된 비표면적 및 세공 부피에도 불구하고 매우 우수한 암모니아 흡착 성능을 나타내었다. 특히, NiCl2를 첨착하여 제조한 HNO3-NiCl2 AC는 가장 우수한 암모니아 흡착능(3.736 mmol·g-1)을 나타내었으며, 미처리된 활성탄(0.066 mmol·g-1)과 비교하여 약 57배 향상되었다.

Synthesis and Characterization of Fe-Co/mesoHZSM-5 : Effect of Desilication Agent and Iron-cobalt Composition

  • Jimmy, Jimmy;Roesyadi, Achmad;Suprapto, Suprapto;Kurniawansyah, Firman
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.163-169
    • /
    • 2020
  • Synthesis of Fe-Co/meso-HZSM5 catalyst, intended to be applied in Fischer-Tropsch (FT) reaction was investigated. The study emphasized the effect of desilication agents, NaOH and KOH, on the catalyst materials properties. Impregnation composition of active metal (Fe and Co) was also examined. HZSM-5, converted from ammonium ZSM-5 through calcination, was treated with NaOH and KOH for desilication, followed by impregnation with 10% metal loading. Fe composition in the initial mixture was varied at 10-50% from total composition. After impregnation, reduction was applied by flowing hydrogen gas at 400 ℃ for 10 hours. The use of KOH solution induced greater mesoporous volumes; however, it had a detrimental effect on zeolite crystal structure. NaOH solutions, on the other hand, increased mesopore area as high as 100%, indicated from surface area increase from 266.28 m2/g of HZSM-5, to 526.03 m2/g of NaOH-desilicated HZSM-5. In addition, the application of NaOH solution increased pore volume from 0.14 cc/g to 0.486 cc/g. Further, more Fe-Co alloys and less oxide of iron (Fe2O3) as well cobalt (Co3O4) had been commonly observed in the produced catalysts. The largest Fe-Co alloys could be found in 50Fe-50Co/HZSM-5

알루미늄 합금 양극산화피막의 표면경도 측정법 (Novel Methods for Measuring the Surface Hardness of Anodic Oxide Films on Aluminum Alloy)

  • 문성모
    • 한국표면공학회지
    • /
    • 제53권1호
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, two novel methods to measure the surface hardness of anodic oxide films on aluminum alloys are reported. The first method is to impregnate oil-based ink into pores in the anodic oxide film and then to clean the ink on the surface using ethanol, resulting in an impregnation of inks only inside of the pores in anodic oxide film. The second method is to coat the anodic oxide film surface with thin Au layer less than 0.1 ?. Both the ink-impregnating method and Au-coating method provided clear indentation marks on the anodic oxide film surface when it was indented using a pyramidal-diamond penetrator. Thus, Vickers hardness of anodic oxide films on aluminium alloy could be measured successfully and precisely from the anodic film surface. In addition, advantages and disadvantages of the ink-impregnating method and Au-coating method for the measurement of surface hardness of anodic oxide films are discussed.

구리 나노 입자가 함침된 PTFE의 윤활 마모 거동 (Tribological Wear Behavior of PTFE Impregnated with Cu Nano Particles)

  • 김시영;김은봉;콴유;주창식
    • 동력기계공학회지
    • /
    • 제14권4호
    • /
    • pp.50-55
    • /
    • 2010
  • In order to investigate tribological effects of nano copper particles impregnated(CuN) on surface polytetrafluoroethylene(PTFE) on sealing wear and an experimental study was carried out to determine the wear behavior of copper nano-particles impregnation two kind thickness in super critical $CO_2$ liquid. Experimental results showed that the friction coefficients of CuN PTFE at the low sliding speed(0.44m/s) and the oil temperature ($60^{\circ}C$) were higher than that of virgin PTFE. And a thin nano copper particles impreganated thickness was formed on the surface in the PTFE and the specimen with this treatment has much better friction properties than the original one. Fortunately, at the high load(80 N) and the oil temperature, the friction coefficient of CuN PTFE was lower than that of virgin PTFE. This evidenced the load carrying capacity of CuN PTFE was much better than that of virgin PTFE under the high load condition(80 N) specially. Therefore, it can be concluded that the friction coefficient variation of CuN PTFE is very small but its wear rate decreases greatly with increase in sliding speed.

양이온 함침 활성탄에서의 저농도 이산화탄소 상온 흡착특성 (Ambient Adsorption of Low-level Carbon Dioxide by Metal Treated Activated Carbon)

  • 이경미;조영민
    • 한국대기환경학회지
    • /
    • 제25권4호
    • /
    • pp.316-324
    • /
    • 2009
  • Carbon based sorbents for $CO_2$ adsorption were prepared by impregnation with alkali metals ($Li^+$, $K^+$) and alkaline earth metals ($Ca^{2+}$, $Mg^{2+}$). BET surface area of test sorbents was lower than the intrinsic activated carbon. In particular, impregnation of $Ca^{2+}$ or $Mg^{2+}$ resulted in lower surface area of specific adsorption sites than that of $Li^+$ or $K^+$. While the adsorption capacity for $CO_2$ was high in the sorbents containing $Ca^{2+}$ and $Mg^{2+}$, strong interaction with $CO_2$ would cause to drop the capacity after regeneration. The adsorption was found high relatively in the flow with a high concentration of $CO_2$ and in a low flow rate. The adsorption isotherm for the present modified AC sorbents fits well with the Freundlich model.

Piperazine으로 함침된 활성탄의 이산화탄소 흡착 특성 (Adsorption Characteristic of Carbon Dioxide on Activated Carbon Impregnated with Piperazine)

  • 최성우
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.847-853
    • /
    • 2013
  • Functionalized adsorbent has been synthesized by piperazine(Pz) on activated carbon. Quantitative estimations of $CO_2$ were undertaken using gas chromatography with GC/TCD and the prepared adsorbents were characterized by BET surface area and FT-IR. It was also studied effect of various parameters such as piperazine loadings and adsorption temperature. The specific surface area decreased from $1212.0m^2/g$ to $969.8m^2/g$ by impregnation and FT-IR revealed a N-H functional group at about $1400cm^{-1}$ to $1700cm^{-1}$. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $50{\sim}100^{\circ}C$ was as follow: AC > Pz(10)-AC> Pz(30)-AC> Pz(50)-AC at $20^{\circ}C$ and Pz(10)-AC > AC > Pz(30)-AC> Pz(50)-AC at $50{\sim}100^{\circ}C$. Therefore, for high temperature flue gas condition, the Pz(10)-AC showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. The results suggest that activated carbon impregnated with Pz is an effective adsorbent for $CO_2$ capture from real flue gases above $50^{\circ}C$.

RGO(reduced graphite oxide)에 담지된 PtSn 시리즈 촉매의 합성 및 특성분석과 메탄올 산화 반응 (Synthesis and characterization of 60 wt.% RGO(reduced graphite oxide) supported PtSn series catalysts for methanol electrooxidation)

  • 최승목;김원배;이주열
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.159-159
    • /
    • 2013
  • 넓은 비표면적과 높은 전기전도성을 갖는 표면에 관능기가 도입된 RGO(reduced graphite oxide)를 modified Hummers method 와 thermal exfoliation 을 통해하여 합성하였으며 합성된 RGO를 PtSn alloy 촉매의 담지체로 도입하여 impregnation method를 통해 PtSn/RGO 시리즈 촉매를 합성하였다. XRD, SEM, TEM, XPS 분석을 통해 촉매의 특성을 분석하였고 methanol electrooxidation 활성을 확인하였다.

  • PDF

알칼리회복제의 현장 적용성에 관한 실험적 연구 (To Experimental Study of Alkalinity Recovery Agent application in field)

  • 김광기;박선길;김우재;이영도;송병창;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.7-10
    • /
    • 2002
  • Concrete used up to date semipermanent architecture material but now day concrete early deterioration emboss social issue because of construction structure and environmental factor. so, many study of deterioration concrete construction improve durability used impregnation alkalization agent. In These to Study of derelop reoairmeat material in reduce carbonation. xoncrete Building use Alkalinity Recovery Agent which is Realkalinity and strength surface. Alkalinity Recovery Agent undisposed application volume and cure the concrete period. To study Alkalinity Recovery Ahent spray and cure the concrete propriery in field.

  • PDF

작업환경 중 황화수소 제거를 위한 첨착활성탄소섬유의 흡착특성 (Adsorption Characteristics of Impregnated Activated Carbon Fiber for the Removal of Hydrogen Sulfide at the Working Environment)

  • 김기환;신창섭
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.127-133
    • /
    • 1999
  • One of the major malodorous gas at the working place is hydrogen sulfide and impregnated activated carbon fiber(ACF) was used as a adsorbent to remove this gas. ACF is treated and impregnated with chemicals to increase the adsorption capacity. The experiments showed that the adsorption efficiency for hydrogen sulfide was increased in case of impregnation with $Na_2CO_3$ or KI. Also, by the surface treatment with NaOH, the adsorption efficiency was increased however not so much as impregnation. KI was the best impregnant for this purpose and the optimum concentration was 9wt%. The adsorption capacity of hydrogen sulfide was more than 500mg/g ACF.

  • PDF

초임계 함침법을 이용한 PEMFC용 Pt/Nafion 자가가습막의 제조 연구 (Preparation of Pt impregnated Nafion self-humidifying membranes for PEMFC using supercritical $CO_2$)

  • 신우균;김화용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.433-437
    • /
    • 2006
  • Pt/Nafion self-humidifying membranes for Polymer Electrolyte Membrane Fuel Cell(PEMFC) were synthesized via supercritical-impregnation methods. The Nafion 112 membranes were impregnated with Pt(II)$(acetylacetonate)_2$ from a supercritical carbon dioxide $(scCO_2)$ solution at $80^{\circ}C$ and 30MPa. After the impregnation, the pressure decreased slowly by releasing $CO_2$. And the Pt-impregnated Nafion membrane was converted Pt deposited Nafion membrane by reducing agent, sodium borohydride $(NaBH_4)$ with various concentrations under $50^{\circ}C$ and 2 hours. The prepared Pt-impregnated Nafion (Pt/Nafion) composite membrane were investigated by Electron Prove Micro analysis (EPMA) and X-rat Diffraction analysis (XRD) which showed distribution of Pt particle and Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) a which revealed morphology of surface of Pt/Nafion composite membrane. The performance of the Pt/Nafion 112 membranes was examined in PEMFC as aself-humidifyin membranes using purpose-built equipment.

  • PDF