Browse > Article
http://dx.doi.org/10.14478/ace.2021.1095

Enhancement of Ammonia Adsorption Performance by Impregnation of Metal Chlorides on Surface-Modified Activated Carbon  

Song, Kang (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lim, Jeong-Hyeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Cheol-Gyu (Odor Management Institute)
Park, Cheon-Sang (World Vision)
Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.6, 2021 , pp. 671-678 More about this Journal
Abstract
Effects of nitric acid treatment of an activated carbon and impregnation of metal chlorides on the activated carbon were investigated to improve ammonia adsorption performance. It was confirmed that functional groups such as hydroxyl and carboxyl groups were introduced onto a surface of the activated carbon with nitric acid treatment. Then, each metal chloride (NiCl2, MgCl2, CuCl2, MnCl2 or CoCl2) was impregnated onto the surface-modified activated carbon using an ultrasonic impregnation method. The physicochemical properties and ammonia adsorption performance of various impregnated activated carbons were observed. Metal chlorides were well dispersed by sonication and evenly distributed on the surface of the activated carbon. Despite the reduced specific surface area and pore volume, the surface-modified activated carbon impregnated with metal chlorides exhibited excellent ammonia adsorption performance. In particular, HNO3-NiCl2 AC prepared by impregnating NiCl2 showed the best ammonia adsorption capacity of 3.736 mmol·g-1, which was improved by about 57 times compared to that of an untreated activated carbon (0.066 mmol·g-1).
Keywords
Ammonia adsorption; Activated carbon; Nitric acid; Metal chlorides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Pyrzynska and M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles, Colloids Surf. A Physicochem. Eng. Asp., 362, 102-109 (2010).   DOI
2 Y. H. kim and S. J. Park, Effect of pre-oxidation of pitch by H2O2 on porosity of activated carbons, Appl. Chem. Eng., 21, 183-187 (2010).
3 J. J. Lee and K. S. Lee, Changes of adsorption capacity and structural properties during in situ regeneration of activated carbon bed using ozonated water, Appl. Chem. Eng., 31, 341-345 (2020).   DOI
4 T. Mochizuki, M. Kubota, H. Matsuda, and L. F. D. Camacho, Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation, Fuel. Process. Technol., 144, 164-169 (2016).   DOI
5 A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Micropor. Mesopor. Mater., 218, 15-23 (2015).   DOI
6 S. H. Pak, M. J. Jeon, and Y. W. Jeon, Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal, Int. Biodeterior. Biodegradation., 113, 195-200 (2016).   DOI
7 J. H. Park, R. H. Hwang, H. C. Yoon, and K. B. Yi, Effects of metal loading on activated carbon on its adsorption and desorption characteristics, J. Ind. Eng. Chem., 74, 199-207 (2019).   DOI
8 J. J. A. Daza, G. A. Pasquale, J. A. R. Herrea, G. P. Romanelli, and L. R. Pizzio, Mesoporous activated carbon from sunflower shells modified with sulfonic acid groups as solid acid catalyst for itaconic acid esterification, Catal. Today, 372, 51-58 (2021).   DOI
9 E. Rezaei, R. Azar, M. Nemati, and B. Predicala, Gas phase adsorption of ammonia using nano TiO2-activated carbon composites-effect of TiO2 loading and composite characterization, J. Environ. Chem. Eng., 5, 5902-5911 (2017).   DOI
10 J. H. Park, H. U. Rasheed, K. H. Cho, H. C. Yoon, and K. B. Yi, Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons, Korean. J. Chem. Eng., 37, 1029-1035 (2020).   DOI
11 K. Nuithitikul, R. Phromrak, and W. Saengngoen, Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution, Nature, 10, 1-14 (2020).   DOI
12 L. Li, S. Liu, and J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater., 192, 683-690 (2011).   DOI
13 Y. Kojima, and M. Yamaguchi, Ammonia storage materials for nitrogen recycling hydrogen and energy carriers, Int. J. Hydrog. Energy, 45, 10233-10246 (2018).   DOI
14 M. A. Shipman and M. D. Symes, Recent progress towards the electrosynthesis of ammonia from sustainable resource, Catal. Today, 286, 57-68 (2017).   DOI
15 H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst., 37, 109-133 (2019).   DOI
16 N. Vajrala, W. M. Habbena, L. A. S. Soto, A. Schauer, P. J. Bottomley, D. A. Stahl, and D. J. Arp, Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea, Proc. Natl. Acad. Sci. U.S.A., 110, 1006-1011 (2013).   DOI
17 C. C. Huang, H. S. Li, and C. H. Chen, Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 159, 523-527 (2008).   DOI
18 A. Salimova, J. Zuo, F. Liu, Y. Wang, S. Wang, and K. Verichev, Ammonia and phosphorous removal from agricultural runoff using cash crop waste-derived biochars, Front. Environ. Sci. Eng., 14, 1-13 (2020).   DOI
19 J. Y. Kim, J. Y. Kim, Y. H. Lee, M. S. Kim, M. S. Kim, H. J. Kim, T. I. Ryu, J. H. Jeong, S. R. Hwang, K. Kim, and J. H. Lee, Removal efficiency of ammonia and toluene using mobile scrubber, Korean J. Environ. Agric., 37, 49-56 (2018).   DOI
20 G. H. Cho, J. H. Park, H. U. Rasheed, H. C. Yoon, and K. B. Yi, A study on the adsorption and desorption characteristics of metal-impregnated activated carbons with metal precursors for the regeneration and concentration of ammonia, Clean Technol., 26, 137-144 (2020).   DOI
21 H. N. Yang, A. Zuttel, S. D. Kim, Y. D. Ko, and W. J. Kim, Effect of boron doping on graphene oxide for ammonia adsorption, Chem. Nano. Mater., 3, 794-797 (2017).
22 A. Alabadi, S. Razzaque, Y. Yang, S. Chen, and B. Tan, Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity, Chem. Eng. J., 281, 606-612 (2015).   DOI
23 C. M. Castilla, F. C. Marin, F. J. M. Hodar, and J. R. Utrilla, Effects of non-oxidant and oxidation acid treatments on the surface properties of an activated carbon with very low ash content, Carbon, 36, 145-151 (1998).   DOI
24 J. H. Shin and S. C. Hong, A study of nitric oxide oxidation catalyst using non-noble metals, Appl. Chem. Eng., 32, 385-392 (2021).   DOI
25 S. W. Lee, G. Y. Oh, R. N. Kim, and D. K. Kim, Surface properties of modified activated carbon for ammonia gas removal, J. KOSAE., 29, 317-324 (2013).   DOI
26 M. Goncalves, L. S. Garcia, E. O. Jardim, J. S. Albero, and F. R. Reinoso, Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions, Environ. Sci. Technol., 45, 10605-10610 (2011).   DOI
27 L. N. Mchugh, A. Terracina, P. S. Wheatley, G. Buscarino, M. W. Smith, and R. E. Morris, Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams, Angew. Chem. Int. Ed., 58, 11747-11751 (2019).   DOI
28 O. Mathieu and E. L. Peterson, Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry, Combust. Flame, 162, 554-570 (2015).   DOI
29 A. G. Bannov, O. Jasek. J. Prasek, J. Bursik, and L. Zajickova, Enhanced ammonia adsorption on directly deposited nanofibrous carbon films, J. Sens., 2018, 1-14 (2019).
30 I. Spanopoulos, I. Bratsos, C. Tampaxis, A. Kourtellaris, G. Charalambopoulou, T. A. Steriotis, and P. N. Trikalitis, Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate, Cryst. Eng. Comm., 17, 532-539 (2014).
31 R. E. Lee, C. H. Lim, M. J. Kim, and Y. S. Lee. Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021).   DOI
32 T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018).   DOI
33 K. S. Lee, Y. J. Seo, and H. T. Jeong, Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor, Carbon Lett., 31, 1041-1049 (2021).   DOI
34 N. Y. Rachel, B. Abdelaziz, N. J. Nsami, K. Daouda, Y. Abdelrani, L. Mehdi, L. Khalid, and K. M. Joseph, Antibacterial properties of AgNO3-activated carbon composite on Escherichia Coli: inhibition action, Int. J. Adv. Chem., 6, 46-52 (2018).   DOI
35 O. V. Netskina, A. A. Pochtar, O. V. Komova, and V. I. Simagina, Solid-state NaBH4 composites as hydrogen generation material: effect of thermal treatment of a catalyst precursor on the hydrogen generation rate, Catalysts, 10, 201-212 (2020).   DOI
36 H. T. jang, Y. K. Park, and Y. S. Ko, Ammonia conversion in the presence of precious metal catalysts, Korean Chem. Eng. Res., 46, 806-812 (2008).
37 Y. G. Park and J. I. Kim, Efficiency characteristics by mixed absorbents for the removal of odor compounds in the wet scrubber, Appl. Chem. Eng., 22, 48-55 (2011).
38 H. S. Jung, Y. S. Won, D. M. Siregar, S. K. Mission, and J. H. Lim, Removal of hydrogen sulfide by using sodium carbonate impregnated activated carbon fiber, Clean. Technol., 23, 113-117 (2017).   DOI
39 J. Lemus, J. Bedia, C. Moya, N. A. Morales, M. A. Gilarranz, J. Palomar, and J. J. Rodriguez, Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs), RSC Adv., 6, 61650-61660 (2016).   DOI
40 W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, and J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption, Micropor. Mesopor. Mater., 234, 146-154 (2016).   DOI
41 K. Vikrant, V. Kumar, K. H. Kim, and D. Kukkar, Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia, J. Mater. Chem., 5, 22877-22896 (2017).   DOI
42 S. J. park and B. J. Kim, Ammonia removal of activated carbon fibers produced by oxyfluorination, J. Colloid Interface Sci., 291, 597-599 (2005).   DOI
43 A. Allwar, R. Hartati, and I. Fatimah, Effect of nitric acid treatment on activated carbon derived from oil palm shell, IOSR J. Appl. Chem., 1823, 9-15 (2017).