• Title/Summary/Keyword: surface impregnation

Search Result 267, Processing Time 0.02 seconds

Relationship between the porosity of the nanostructured $TiO_2$ electrode and Dye Loading for Dye-sensitized Solar Cells (염료감응태양전지를 위한 $TiO_2$ 분말 기공도와 염료 흡착량의 관계)

  • Hwang, Seongjin;Jung, Hyunsang;Jeon, Jaeseung;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSC) show great promise as an inexpensive alternative to conventional p-n junction solar cells. Investigations into the various factors influencing the photovoltaic efficiency have recently been intensified. The conventional absorber electrode in DSSC is composed of compacted or sintered $TiO_2$ nanopowder that carries an anchored organic dye. The absorbance of incident light in the DSC is realized by specifically engineered dye molecules placed on the semiconductor electrode surface ($TiO_2$). The dye absorbs light at wavelengths up to about 920nm, the energy of the exited state of the molecule should be about 1.35eV above the electronic ground state corresponding to the ideal band gap of a single band gap solar cell. The dye molecules ar adhered onto the nanostrutured $TiO_2$ electrode by immersing the sintered electrode into a dye solution, typically 3mM in alcohol, for a long enough period to fully impregnate the electrode. However, the concentrations of the dye is slightly changed due to the evaporation of the alcohol. The dye is more expensive than other materials in DSSC and related to the efficiency of DSSC. Therefore, the concentrations of the dye should be carefully measured. In this study, we investigated to the dye loading on fired $TiO_2$ powder as a function of temperature by the TG-DTA and the dye solution by UV-visible spectroscopy after the impregnation process. The dye loading is related to the porosity of the nanostructured $TiO_2$ electrode.

  • PDF

NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization

  • Sohn, Jong-Rack;Kim, Young-Tae;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1749-1756
    • /
    • 2005
  • The $NiSO_4$ supported on FeO-promoted $ZrO_2$ catalysts were prepared by the impregnation method. FeOpromoted $ZrO_2$ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or FeO) to $ZrO_2$ shifted the phase transition of $ZrO_2$ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or FeO) and $ZrO_2$. 10-$NiSO_4$/5-FeO-$ZrO_2$ containing 10 wt % $NiSO_4$ and 5 mol % FeO, and calcined at 500 ${^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. $NiSO_4$/FeO-$ZrO_2$ catalysts was very effective for ethylene dimerization even at room temperature, but FeO-$ZrO_2$ without $NiSO_4$ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of FeO up to 5 mol % enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between FeO and $ZrO_2$ and due to consequent formation of Fe-O-Zr bond.

Adsorption Capacity of H2S on the Impregnated Activated Carbon with NaOH (NaOH 첨착활성탄의 H2S 흡착능)

  • Lee, Suk-Ki;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-886
    • /
    • 2000
  • $H_2S$ adsorption characteristics of activated carbon adsorbent impregnated with NaOH were investigated. The concentrations of NaOH reagent were 1~8N and the particle size of activated carbon was $8{\times}30$ mesh. The experimental results showed that the BET surface area decreases from $1050m^2/g$ to $783m^2/g$ and acidity of activated carbon decreases from 0.541 meq/g-AC to 0 meq/g-AC, while pH increases from 9.56 to 10.86 when the impregnation ratio increases from 0.87% to 5.8%. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH increases with increasing temperature and $H_2S$ concentration and varies in the range of 17.87~30.34 mg/g-AC at adsorption temperature of $45^{\circ}C$, which is 2~3 times larger than that of pure activated carbon.

  • PDF

The Electrochemical Characteristics of MEA with Pt/Cross-Linked SPEEK-HPA Composite Membranes/Pt-Ru for Water Electrolysis (수전해용 Pt/공유가교 SPEEK-HPA 복합막/Pt-Ru MEA의 전기화학적 특성)

  • Hwang, Yong-Koo;Woo, Je-Young;Lee, Kwang-Mun;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • The e1ectrocatalytic properties of heteropolyacids(HPAs) entrapped in covalently cross-linked sulfonated polyetheretherketone(CL-SPEEK/HPA) membranes have been studied for water electrolysis. The HPAs, including tungstophosphoric acid(TPA), molybdophosphoric acid(MoPA), and tungstosilicic acid(TSiA) were used as additives in the composite membranes. The MEA was prepared by a non-equilibrium impregnation-reduction(I-R) method, using reducing agent, sodium borohydride(NaBH4) and tetraamineplatinum(II) chloride(pt(NH$_3$)$_4$Cl$_2$). The electrocatalytic properties of composite membranes such as the cell voltage were in the order of magnitude CL-SPEEKlMoPA40 (wt%) > /TPA30 > /TSiA40. In the optimum cell applications for water electrolysis, the cell voltage of PtlPEM/Pt-Ru MEA with CL-SPEEKlTPA30 membrane was 1.75 V at 80$^{\circ}$C and I A/cm$^2$ and this voltage carried lower than that of 1.81 V of Nafion 117. Consequently, in regards of electrochemical and mechanical characteristics and oxidation durability, the newly developed CL-SPEEKITPA30 composite membrane exhibited a better performance than the others, but CLSPEEKlMoPA40 showed the best electrocatalytic activity (1.71 Vat 80$^{\circ}$C and 1 A/cm$^2$) among the composite membranes.

Plasma Treatment Effect of Organic/Organic Core-Shell Acrylic Adhesive Binder (II) (Organic/Organic Core-Shell 아크릴 접착바인더의 플라즈마 처리영향 (II))

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • Adhesive binders with core-shell structure of organic/organic pair were prepared by emulsion polymerization of acrylic monomers, such as methyl methacrylate(MMA), ethyl acrylate(EA), n-butyl acrylate(BA), and styrene(St). Ammonium persulfate (APS) was used as an water soluble initiator in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS). Non-woven fabric and leather were impregnated with the adhesive binder. The surface of the impregnated fabric and leather were treated with plasma technique and then kinetics analysis and mechanical properties were measured. The conversions of the polymerization of core-shell binder (MMA/EA, MMA/BA) were greater than 90%. When the core-shell binder was prepared at equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the impregnated and plasma-treated non-woven/non-woven fabric has the order of MMA/St, EA/BA, BA/MMA, EA/St, and EA/MMA. When the core-shell binder was prepared at non-equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the non-woven fabric/leather has the order of MMA/BA, BA/EA, MMA/EA, St/MMA, and EA/St.

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura;Lee, Jiyoung;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.345-351
    • /
    • 2018
  • We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

Adsorption Characteristics of Functionalized Activated Carbon for High Temperature CO2 Capture (고온 이산화탄소 포집을 위한 기능성 활성탄의 흡착특성)

  • Choi, Sung-Woo;Lee, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Activated carbon impregnated with polyethyleneimine (PEI) was evaluated as a functionalized adsorbent for $CO_2$ capture. The $CO_2$ adsorption characteristics of the adsorbents was undertaken using GC/TCD, BET surface area and FT-IR. A series of adsorbents were synthesized by impregnating 10, 30, 50 wt% of PEI on activated carbons and were investigated $CO_2$ adsorption capacity at high and low adsorption temperature. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $100^{\circ}C$ was as follow: AC > PEI(10)-AC > PEI(30)-AC > PEI(50)-AC at $20^{\circ}C$ and PEI(10)-AC > PEI(30)-AC > PEI(50)-AC > AC at $100^{\circ}C$. Adsorption capacities of amine functionalized AC was lager than virgin AC at high temperature due to chemisorption by amino-group content. From the results, the PEI(10)-AC showed one of the most promising adsorbents for $CO_2$ capture from flue gas at high temperature.

Synthesis of Extremely Fine Fe-6Al-9Si Alloy Powders by Chemical-Mechanical Hybrid Process (화학적-기계적 혼성공정에 의한 초미세 Fe-6Al-9Si 합금분말의 합성)

  • Yoon Jong Woon;Lee Kee-Sun
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 2005
  • Fe-6Al-9Si(N) alloy powders were synthesized by hybrid process of chemical nitrification and mechanical milling. The nitriding treatment on Fe-6Al-9Si alloy powders formed $\gamma'-Fe_4N$ phase on the powders surface. The nitriding-treated powders were pulverized by horizontal high-energy ball milling machine. The longer ball milling time tended to reduce the size of alloy powders. In ball milling for 36h, extremely fine powders with about $7\~9wt\%$ nitrogen were obtained. Through X-ray diffraction analysis on the powders, it was found out that the longer milling time caused a disappearance of the crystallinity of $\alpha-Fe$ in the powders. TEM study confirmed that the powders is comprised of a few tens nano-meter sized crystals, including $\alpha-Fe$ phase with partially $\gamma'-Fe_4N$ phase. Hysteresis curves of the synthesized powders measured by VSM revealed lower saturation magnetization and higher coercivity, which seemed to be attributed to nitrogen-impregnation and severe residual stress developed during the high energy milling. Microstructure observation on the powder annealed at 873 K for 1 h showed 10 to 20 nm sized $\alpha-Fe$ crystal. Such a enhanced crystallinity significantly increased the magnetization and decreased the coercivity, which was attributed to not only the crystallinity but also residual stress relaxation.

Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel

  • Jeong, Jong-Woo;Park, Jong-Hui;Choi, Sung-Woo;Lee, Kyung-Hee;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2288-2292
    • /
    • 2007
  • The catalytic activities of nickel-based catalysts were estimated for oxidizing acetaldehyde of VOCs exhausted from industrial facilities. The catalysts were prepared by sol-gel methods of SiO2 and SiO2-TiO2 as a xerogel followed by impregnating Al2O3 powder with the nickel nitrate precursor. The crystalline structure and catalytic properties for the catalysts were investigated by use of BET surface area, X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) techniques. These results show that nickel oxide is transformed to NiAl2O4 spinel structure at the calcination temperature of 400 °C in response to the steps with after- and co-impregnation of Al2O3 powder in sol-gel process. The NiAl2O4 could suppress the oxidation reaction of acetaldehyde by catalysts. The NiO is better dispersed on SiO2-TiO2/Al2O3 support than SiO2/Al2O3 and SiO2-TiO2-Al2O3 supports. From the testing results of catalytic activities for oxidation of acetaldehyde, Catalysts showed a big difference in conversion efficiencies with the way of the preparation of catalysts and the loading weight of nickel. The catalyst of 8 wt.% Ni/TiO2-SiO2/Al2O3 showed the best conversion efficiency on acetaldehyde oxidation with 100% conversion efficiency at 350 °C.

Electrochemical and Mechanical Characteristics of Covalently Cross-Linked SPEEK Polymer Electrolyte Membrane for Water Electrolysis (수전해용 공유가교 SPEEK 고분자 전해질 막의 전기 화학적 및 기계적 특성)

  • Kim, Kyung-Eon;Jang, In-Young;Kweon, Oh-Hwan;Hwang, Yong-Koo;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.391-398
    • /
    • 2007
  • The covalently cross-linked sulfonated polyetheretherketone (CL-SPEEK) membrane was prepared by four-step synthesis of sulfonation-sulfochlorination, partial reduction, lithiation, and cross-linking, and its electrochemical and mechanical properties were investigated for water electrolysis application. The prepared ion exchange membranes showed good electrochemical and mechanical properties; proton conductivity of 0.116 S/cm at $80^{\circ}C$, water uptake of 44.6%, ion exchange capacity of 1.75 meq/g-dry-memb., tensile strength of 64.25 MPa and elongation of 61.11%. The membrane electrode assembly (MEA) with homemade membranes were prepared by non-equilibrium impregnation-reduction (I-R) method. Especially, the electrochemical surface area (ESA) and roughness factor of CL-SPEEK electrolyte by cyclic voltammetry method were 23.46 $m^2/g$ and 307.3 $cm^2-Pt/cm^2$, respectively. The prepared MEA was used in the unit cell of water electrolysis and the cell voltage was 1.81 V at 1 A/$cm^2$ and $80^{\circ}C$, with platinum loadings of 1.31 mg/$cm^2$.