• 제목/요약/키워드: surface hydrophobicity

검색결과 419건 처리시간 0.036초

방전가공면을 복제한 실리콘수지 표면의 발수특성연구 (Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface)

  • 김영훈;홍석관;이상용;이성희;김권희;강정진
    • 소성∙가공
    • /
    • 제22권1호
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

cAMP와 표면 소수성에 의한 도열병균의 부착기 형성 (Uniformity Among Magnaporthe grisea Isolates on Appressorium Formation by cDNA and Hydrophobicity of Contact Surface)

  • 이용환;최우봉
    • 한국식물병리학회지
    • /
    • 제10권4호
    • /
    • pp.254-260
    • /
    • 1994
  • Magnaporthe grisea, a causal agent of blast, forms a specialized infection structure, an appressorium, to infect host. Hydrophobicity of contact surface and cAMP have been suggested as a primary environmental signal and a second messenger to trigger and mediate appressorium formation in this fungus, respectively. To generalize these factors in field isolates of M. girsea, twenty isolates originated from rice and other gramineous hosts were tested. Seventeen including rice and non-rice isolates formed appressoria on hydrophobic surface, but none of isolates formed appressoria on hydrophilic surface. Eighteen isolates formed appressoria on hydrophilic surface in the presence of IBMX, an inhibitor of phosphodiesterase, except two rice isolates. These results strongly support the hypothesis that appressorium formation by M. grisea is induced by hydrophobic hard surface and regulated by the endogenous level of cAMP in the cells. Understanding fungal development is not only of biological interest but provides new targets for novel disease control strategies.

  • PDF

ATH 의 입도에 따른 실리콘 고무의 특성 (Properties of Silicone Rubber According to the Addition of Different Particle Size of ATH)

  • 박효열;강동필;안명상;김대환;이후범;오세호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.216-219
    • /
    • 2002
  • Much quantity of anti-tracking agent, ATH is added to the silicone rubber for the protection of silicone rubber against surface discharge. Hydrophobicity recovery properties of silicone rubber could be different by the content, surface treatment state and particle size of ATH. Because hydrophobicity of silicone rubber is depend much on the surface state of ATH. In this paper, the properties of silicone rubber is investigated according to the addition of different particle size of ATH to the silicone rubber. Hydrophobicity recovery properties and arc resistance of silicone rubber were investigated according to the addition of different particle size of ATH. Hydrophobicity recovery properties of silicone rubber were evaluated by the measurement of contact angle.

  • PDF

ATH의 입자크기 및 첨가량에 따른 실리콘 고무의 전기적 특성 (Electrical Properties of Silicone Rubber with Different Particle Size and Amount of ATH)

  • 박효열;강동필;안명상;명인혜;이태희;이태주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.227-230
    • /
    • 2003
  • Silicone rubber has very excellent chemical stability and hydrophobicity. A hydrophobic surface can prevent the formation of continuous water films on the surface in wet and heavily contaminated conditions. This phenomenon contributes to the suppression of leakage current and partial discharges on insulator surfaces. Silicone rubber has been used much for housing materials of polymer insulators. ATH is added to the silicone rubber for improvement of its resistance against surface discharge. In this paper, ATH with different particle size and content was added to the silicone rubber during compounding. Silicone rubber was deteriorated by a corona treatment. Hydrophobicity recovery rate after corona treatment and arc resistance of silicone rubber were investigated. Hydrophobicity recovery rate of silicone rubber was evaluated by the measurement of contact angle. Arc resistance was evaluated by measuring weight loss of silicone rubber after arc resistance test. It was observed that the hydrophobicity recovery rate and arc resistance of silicone rubber were different when different particle size and content of ATH were added.

  • PDF

The Possible Involvement of the Cell Surface in Aliphatic Hydrocarbon Utilization by an Oil-Degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Oh, Young-Sook;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.333-337
    • /
    • 2000
  • An oil-degrading yeast, Yarrowia lipolytica 180, exhibits interesting cell surface characteristics under the growth on hydrocarbons. An electron microscopic study revealed that the cells grown on crude oil showed protrusions on the cell surface, and thicker periplasmic space and cell wall than the cell surface, and thicker periplasmic space and cell wall than the cells grown on glucose. Y. lipolytica cells lost its cell hydrophobicity after pronase(0.1 mg/ml) treatment. The strain produced two types of emulsifying materials during the growth on hydrocarbons; one was water-soluble extracellular materials and the other was cell wall-associated materials. Both emulsifying materials at lower concentration (0.12%) enhanced the oil-degrading activity of Moraxella sp. K12-7, which had medium emulsifying activity and negative cell hydrophobicity; however, it inhibited the oil-degrading activity of Pseudomunas sp. K12-5, which had medium emulsifying activity and cell hydrophobicity. These results suggest that the oil-degrading activity of Y. lipolytica 180 is closely associated with cell surface structure, and that a finely controlled application of Y.lipolytica 180 in combination with other oil-degrading microorganisms showed a possible enhancing efficiency of oil degradation.

  • PDF

Silicon rubber 애자의 salt-fog 표면열화 특성 (Surface Aging Properties of Silicon Rubber Insulator by salt-fog)

  • 이종찬;이운용;조한구;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.255-257
    • /
    • 2001
  • In this paper, the silicon rubber insulator for transmission line was experimented for 1,000 hours aging test in salt-fog condition. To evaluate and examine the aging properties of silicon rubber insulator for test, the leakage current of surface was measured. Also hydrophobicity and scanning electron microscopy were compared with initial and aged sample respectively Above results, we can confirm that the surface properties of silicon rubber insulator easily aged by salt-fog condition.

  • PDF

자외선 열화에 의한 에폭시 절연재료의 표면특성과 내트래킹성 (Surface Characteristics and Tracking Resistance of Epoxy Insulating Materials against Ultraviolet)

  • 조한구;유대훈;강형경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.495-496
    • /
    • 2008
  • This paper describes the influence of Ultra-violet irradiation on time to tracking resistance of epoxy insulating materials by use of the inclined plane test. And, the influence of surface degradation was evaluated through several method such as measurement of contact angle, surface roughness, using a scanning electron microscopy. As the 1000 hours of the surface degradation with UV-CON, the flashover time decreases at different rates depending on epoxy resin and silicone rubber specimen. As the duration of the surface degradation with UV-CON is prolonged, the contact angle of epoxy resin decreases at the rate of degradation time, while that of silicone rubber was not exchanged. It is assumed that this phenomenon is related to the decrease in hydrophobicity of the surface of the materials. Also, as to epoxy resin, the decrease of hydrophobicity due to surface degradation with UV-CON is greater than that resulting from surface degradation with WOM. The UV radiation produced chalking and crazing on the surface of the insulating materials specimen.

  • PDF

분리 땅콩 단백질의 기포 특성에 관한 연구 (A Study of the Foaming Properties of Peanut Protein Isolate)

  • 박현경;손경희;김현정
    • 한국식품조리과학회지
    • /
    • 제6권3호통권12호
    • /
    • pp.9-15
    • /
    • 1990
  • Peanut prptein isolate was tested for the purpose of finding out the effect of pH, Sodium Chloride concentration and heat treatment on the solubility, surface hydrophobicity, foam expansion and foam stability. The solubility of peanut protein isolate was affected by pH and showed the lowest value at pH 4.5. When the peanut protein isolate was heated, the solubility decreased at pH 3 and pH 7 but at pH 9 solubility increased. At all pH range, solubility decreased as NaCl was added. The surface hydrophobicity of peanut protein isolate showed the highest value at pH 1.5. Generally, at acidic pH range the surface hydrophobicity was high, but at alkaline region, the surface hydrophobicity increased as the temperature increased. And when NaCl was added, the surface hydrophobicity was also increased. Foam expansion of peanut protein isolate was no significant difference among the values about pH. When the peanut protein was heated and NaCl was added, foam expansion was increased at pH 7. Foam stability was significantly low at pH 4.5 and foam stability was increased at acidic pH region below pH 4.5. At pH 7 and pH 9, heat treatment above $60^{\circ}C$ increased foam stability. When NaCl was added, foam stability was significantly increased at pH 3 and pH 7.

  • PDF

Theoretical Study on Hydrophobicity of Amino Acids by the Solvation Free Energy Density Model

  • Kim, Jun-Hyoung;Nam, Ky-Youb;Cho, Kwang-Hwi;Choi, Seung-Hoon;Noh, Jae-Sung;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1742-1750
    • /
    • 2003
  • In order to characterize the hydrophobic parameters of N-acetyl amino acid amides in 1-octanol/water, a theoretical calculation was carried out using a solvation free energy density model. The hydrophobicity parameters of the molecules are obtained with the consideration of the solvation free energy over the solvent volume surrounding the solute, using a grid model. Our method can account for the solvent accessible surface area of the molecules according to conformational variations. Through a comparison of the hydrophobicity of our calculation and that of other experimental/theoretical works, the solvation free energy density model is proven to be a useful tool for the evaluation of the hydrophobicity of amino acids and peptides. In order to evaluate the solvation free energy density model as a method of calculating the activity of drugs using the hydrophobicity of its building blocks, the contracture of Bradykinin potentiating pentapeptide was also predicted from the hydrophobicity of each residue. The solvation free energy density model can be used to employ descriptors for the prediction of peptide activities in drug discovery, as well as to calculate the hydrophobicity of amino acids.

Rotating Wheel Dip Test에 의한 에폭시 절연재료의 내트래킹성과 열화 특성 (Tracking Resistance and Aging Characteristics of Epoxy Insulating Materials by the Rotating Wheel Dip Test)

  • 조한구
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.530-537
    • /
    • 2008
  • This paper describes the results of a study on the tracking performance of outdoor insulating materials based on the rotating wheel dip test(RWDT). And, the influence of surface degradation was evaluated through such as measurement of the flashover voltage after and before tracking test, also aspects of surface degradation using scanning electron microscopy. The time to tracking breakdown of treated filled specimen is longer than untreated filled specimen. And, after the RWDT, the surface of specimen by adding untreated filler appeared heavy erosion. It was found that the addition to surface treated filler, the better tracking resistance. In the RWDT, the breakdown specimen is not affected by the dry flashover voltage, despite the fact that the surface degradation of tracking test has different state on each specimen. This suggests that wet flashover voltage play an important role in evaluating of tracking and erosion on the surface degradation in tracking test. And, the flashover voltage of specimen under wet conditions are greatly affected by the salt concentration and degree of degradation by the RWDT Because of hydrophobicity and degree of degradation by the RWDT, the flashover voltage of treated filled specimen is higher than that of untreated filled specimen. Different types of specimen may have different hydrophobicity and their surface state under contaminated conditions may not be the same.