• Title/Summary/Keyword: surface humidity

Search Result 901, Processing Time 0.024 seconds

Relationship between saliva factors and oral hygiene factors in adults (일부 성인의 타액요인과 구강환경 요인의 관련성)

  • Hong, Min-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.15 no.2
    • /
    • pp.189-196
    • /
    • 2015
  • Objectives: The purpose of the study is to investigate the relationship between saliva factors and oral hygiene factors in adults. Methods: The subjects were 112 adults from April 1 to June 15, 2014. The selected salivary factors included stimulated/unstimulated salivary flow rates, salivary buffering capacity and pH, and the selected oral hygiene factors included halitosis, wet weight of tongue plaque and oral humidity in dorsum and inferior surface of tongue. Results: There were significant differences in stimulated/unstimulated salivary flow rates, oral malodor and wet weight of tongue plaque. There were significant differences according to age in stimulated/unstimulated salivary flow rates, salivary buffering capacity and wet weight of tongue plaque. Age had a negative correlation with salivary buffering capacity and had a positive correlation with wet weight of tongue plaque. Unstimulated salivary flow rate had a positive correlation with stimulated salivary flow rate, and stimulated salivary flow rate was positively correlated with oral humidity of inferior surface of tongue, salivary buffering capacity and halitosis. Oral humidity of inferior surface of tongue had a positive correlation with salivary buffering rate, pH and halitosis. Salivary buffering capacity was positively correlated with pH, and pH was negatively correlated with halitosis. Conclusions: The salivary factors were linked to the oral hygiene. As there may be great changes in salivary flow rate and oral hygiene due to various factors, the salivary factors seem to be one of the major factors to ensure oral hygiene and to promote oral health.

Development of Prediction Models of Dressroom Surface Condensation - A nodal network model and a data-driven model - (드레스룸 표면 결로 발생 예측 모델 개발 - 노달 모델과 데이터 기반 모델 -)

  • Ju, Eun Ji;Lee, June Hae;Park, Cheol-Soo;Yeo, Myoung Souk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • The authors developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area. The nodal network model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the nodal model is not good enough for predicting humidity of the target space, having 55.6% of CVRMSE. It is because re-evaporation effect could not be modeled due to uncertain factors in the field measurement. Hence, a data-driven model was introduced using an artificial neural network (ANN). It was found that the data-driven model is suitable for predicting the condensation compared to the nodal model satisfying ASHRAE Guideline with 3.36% of CVRMSE for temprature, relative humidity, and surface temperature on average. The model will be embedded in automated devices for real-time predictive control, to minimize the risk of surface condensation at dressroom in an apartment housing.

Bridge Road Surface Frost Prediction and Monitoring System (교량구간의 결빙 예측 및 감지 시스템)

  • Sin, Geon-Hun;Song, Young-Jun;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.42-48
    • /
    • 2011
  • This paper presents a bridge road surface frost prediction and monitoring system. The node sensing hardware comprises microprocessor, temperature sensors, humidity sensors and Zigbee wireless communication. A software interface is implemented the control center to monitor and acquire the temperature and humidity data of bridge road surface. A bridge road surface frost occurs when the bridge deck temperature drops below the dew point and the freezing point. Measurement data was used for prediction of road surface frost occurrences. The actual alert is performed at least 30 minutes in advance the road surface frost. The road surface frost occurrences data are sent to nearby drivers for traffic accidents prevention purposes.

Developing Models for Patterns of Road Surface Temperature Change using Road and Weather Conditions (도로 및 기상조건을 고려한 노면온도변화 패턴 추정 모형 개발)

  • Kim, Jin Guk;Yang, Choong Heon;Kim, Seoung Bum;Yun, Duk Geun;Park, Jae Hong
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.127-135
    • /
    • 2018
  • PURPOSES : This study develops various models that can estimate the pattern of road surface temperature changes using machine learning methods. METHODS : Both a thermal mapping system and weather forecast information were employed in order to collect data for developing the models. In previous studies, the authors defined road surface temperature data as a response, while vehicular ambient temperature, air temperature, and humidity were considered as predictors. In this research, two additional factors-road type and weather forecasts-were considered for the estimation of the road surface temperature change pattern. Finally, a total of six models for estimating the pattern of road surface temperature changes were developed using the MATLAB program, which provides the classification learner as a machine learning tool. RESULTS : Model 5 was considered the most superior owing to its high accuracy. It was seen that the accuracy of the model could increase when weather forecasts (e.g., Sky Status) were applied. A comparison between Models 4 and 5 showed that the influence of humidity on road surface temperature changes is negligible. CONCLUSIONS : Even though Models 4, 5, and 6 demonstrated the same performance in terms of average absolute error (AAE), Model 5 can be considered the optimal one from the point of view of accuracy.

Thermal and Humidity Sensing Properties of Heat Resistant Polyimide Thin Film Manufactured by Dry Process (건식법에 의해 제조된 내열성 폴리이미드박막의 열적특성 및 습도감지특성)

  • Lim, Kyung-Bum;Kim, Ki-Hwan;Hwang, Sun-Yang;Kim, Jong-Yoon;Hwang, Myung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1080-1086
    • /
    • 2007
  • The aim of this paper is to establish the optimum fabrication condition of specimens, using the Vapor Deposition Polymerization Method(VDPM), which is one of modesto prepare functional organic thin films using a dry process, and to develop a thin film type humidity sensor which has good humidity sensitive characteristics. The inner part of the film became denser and roughness of the film surface eased as curing temperature increased so that thickness of the film could be made uniform. This also shows the appropriate curing temperature was $250^{\circ}C$. The basic structure of the humidity sensor is a parallel capacitor which consists of three layers of Aluminum/Polyimide/Aluminum. The result of SEM and AFM measurement shows that the thickness of PI thin films decreased and the refraction increased as curing temperature increased, which indicates that a capacitance-type humidity sensor utilizing polyimide thin film is fabricated on a glass substrate. The characteristics of fabricated samples were measured under various conditions, and the samples had linear characteristics in the range of 20-80 %RH, independent of temperature change, and low hysteresis characteristic.

Effects of Humidity and Sliding Speed on the Wear Properties of $Si_3N_4$ Ceramics (습도 및 미끄럼 속도에 따른 질화규소의 마찰 마모 특성에 관한 연구)

  • 이기현;김경웅
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.63-69
    • /
    • 1993
  • The wear properties of two types of $Si_3N_4$(silicon nitride) exposed to high and low humidity were examined experimentally for various sliding speed. Bearing steel was used as the disk material at pin-on-disk type sliding. Wear rates of pressureless sintered-plus-hot-isostatic pressed Si3N4 were slightly lower than those of pressureless sintered $Si_3N_4$. It was observed that adsorbed moisture and sliding speed markedly influenced the wear properties of $Si_3N_4$. The highest wear rate was obtained under the high humidity and low sliding speed condition. As the sliding speed was increased, wear rates were decreased and the humidity effect on the wear rates of $Si_3N_4$ was lowered. The result that the $Si_3N_4$ pin showed a high wear rate under the high humidity condition was explained by the property change due to the adsorbed moisture, plowing action by the hard particles of $Fe_2O_3$ from the disk, and the corrosion effect at $Si_3N_4$ surface. Increase in sliding speed was supposed to have reduced the humidity effect on wear rate of $Si_3N_4$ by raising the temperature of both the bearing steel disk and $Si_3N_4$ pin specimen.

Investigation on the Properties of a Microcellular Light-Weighted Humidity Controlling Tile (마이크로셀룰라 경량 조습타일의 특성 고찰)

  • Song, In-Hyuck;Lee, Eun-Jung;Kim, Hai-Doo;Kim, Young-Wook;Yun, Dal-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.404-411
    • /
    • 2011
  • The humidity controlling ceramic materials was developed by applying the phenomena of dew condensation in the capillary. It is said that the humidity range which human feels comfortable is from 40 to 70% in relative humidity. In this study, the ceramic tile using natural soils such as diatomite for interior wall was investigated. In particular, we had introduced novel processing routes for fabricating microcellular ceramics tile using hollow microsphere as a pore former. The microcellular pores in the humidity controlling ceramic materials showed the superior properties such as light-weight, heat insulation. The cell density was ${\sim}1.0{\times}10^9$ cells/$cm^3$ and density of sample was 0.65 g/$cm^3$ in the case of 1.71 wt% hollow microsphere content. Also, it is observed that the BET surface area and the pore volume of the sintered diatomite tile have the values of 40.92 $m^2$/g and 0.173 $cm^3$/g.

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.511-520
    • /
    • 2016
  • Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.

A Moisture Diffusivity Model of Hardening Concrete (경화하는 콘크리트의 수분확산도 모형)

  • Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.31-38
    • /
    • 2005
  • Concrete has higher vapor pressure than its surrounding ambient air immediately after placement. Moisture at concrete surface evaporates to the ambient air to adjust equilibrium of the vapor pressure between them. The moisture inside the concrete moves to the surface because the evaporation at the surface causes gradient of vapor pressure inside the concrete. Plastic cracking, degree of hydration, strength development, and others caused by velocity of the moisture movement significantly influences quality of concrete. In this paper, the moisture diffusivity of early-age concrete was back-calculated using governing equation of the moisture diffusion, and temperature and relative humidity of concrete measured in a laboratory. The moisture diffusivity of the concrete was modeled using the back-calculated moisture diffusivity. The relative humidity of the concrete calculated by finite element method (FEM) using the modeled moisture diffusivity as Input data coincided with the measured relative humidity well.

  • PDF

Effect of Storage Temperature and Humidity on the Quality of Apples and Pears harvested in Gyeongnam, Korea (경남산 사과 및 배의 저장온습도별 품질변화)

  • 신영희;조성환
    • Food Science and Preservation
    • /
    • v.8 no.3
    • /
    • pp.269-273
    • /
    • 2001
  • Apples and pears for investigating the optimal storage conditions were purchased from the farmhouse located in Hadong-Goon and Geochang-Goon Gyeongnam just before the beginning of this experiment. Apples and pears were, stored under 70%(storage temperature : 25$^{\circ}C$), 80%(10$^{\circ}C$) and 90%(5$^{\circ}C$) of relative humidity, respectively and their qualities in microbial counts, decay ratio, surface color difference and chemical attributes were monitored during the storage period. Apples and pears stored under 70% of relative humidity showed the minimal change in weight lass, decrease ratio of ascorbic acid content, surface color difference and degrees contaminated by putrefactive microorganisms. As the results of this experiment, apples and pears stored under 90% of relative humidity showed the optimal storage conditions for maintaining their freshness.

  • PDF