• Title/Summary/Keyword: surface geometry

Search Result 1,292, Processing Time 0.03 seconds

A STUDY ABOUT FLOW CONTROL CHARACTERISTICS USING A SYNTHETIC JET (Synthetic Jet을 이용한 유동제어 특성연구)

  • Hong, Woo-Ram;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Yu-Shin;Kim, Chong-Am
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • To develop an aerodynamic performance, two groups of studies have been achieved widely. One is about the geometric design of vehicles and the other is about aerodynamic devices. Geometric design is a credible and stable method. However, it is not flexible and each part is related interactively. Therefore, if one part of geometry is modified, the other part will be required to redesign. On the other hand, the flow control by aerodynamic devices is flexible and modulized method. Even though it needs some energy, a relatively small amount of input makes more advanced aerodynamic performance. Synthetic jet is one of the method in the second group. The device repeats suctions and blowing motions in constant frequency. According to the performance, the adjacent flow to flight surface are served momentum. This mechanism can reduce the aerodynamic loss of boundary layer and separated flow. A synthetic jet actuator has several parameters, which influences the flow control. This study focuses on the parameter effects of synthetic jet - orifice geometry, frequency, jet speed and etc.

Numerical analysis for the development of a Mixed-flow In-line duct fan with a high performance (고성능 사류식 In-line duct fan의 개발을 위한 전산해석)

  • Kim, Sung-Kon;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.604-609
    • /
    • 2001
  • This numerical analysis uses the lifting surface method and frequency-domain panel method based on the linear compressible aerodynamic theory. Increased knowledge of flow conditions within mixed-flow fan should indicates means of improving performance of these turbomachines. Thus, only an approximate solution is obtained whose prime intent is to recognize the most significant characteristics of the "ideal" geometry. For a given set of operating condition, the flow conditions within mixed-flow fan depend on the geometry of the machine (three-dimensional flow effects) and on the properties of the fluid. But most treatments of the problem have been concerned with the two-dimensional flow effects for incompressible, non-viscous fluids. Interest in the field of mixed-flow fan resulted in the undertaking of a program to develop reliable design procedures that would avoid the need for lengthy development work.

  • PDF

Overload Analysis and Fatigue Life Prediction Using an Effective J-Integral of Spot Welded Specimens (점용접시편의 과부하해석 및 유효 J-적분에 의한 피로수명예측)

  • Lee, Hyeong-Il;Choe, Jin-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.567-580
    • /
    • 2000
  • This paper proposes an integrated approach, which is independent of specimen geometry and loading type, for predicting the fatigue life of spot welded specimens. We first establish finite element models reflecting the actual specimen behaviors observed on the experimental load-deflection curves of 4 types of single spot welded specimens. Using finite element models elaborately established, we then evaluate fracture parameter J-integral to describe the effects of specimen geometry and loading type on the fatigue life in a comprehensive manner. It is confirmed, however, that J-integral concept alone is insufficient to clearly explain the generalized relationship between load and fatigue life of spot welded specimens. On this ground, we introduce another effective parameter $J_e$ composed of $J_I$, $J_{II}$, $J_{III}$, which has been demonstrated here to more sharply define the relationship between load and fatigue life of 4 types of spot welded specimens. The crack surface displacement method is adopted for decomposition of J, and the mechanism of the mixed mode fracture is also discussed in detail as a motivation of using $J_e$.

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

Three-Dimensional Flow Simulations around a Numerical Model of Wing-In-Ground(WIG) Effect Ship having the complex geometry (복잡한 해면효과익선 계산 모형 주위의 3차원 유동장의 수치계산)

  • PARK Jong-Chun;SHIN Myung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.85-92
    • /
    • 1996
  • Numerical simulations are made for the three-dimensional flow around a wing in ground effect craft haying the complex geometry. A numerical tool is developed for the primary design of hull and wing shape of practical Wing-In-Ground effect(WIG) stop. The finite-difference method is utilized to descretize the governing equations and pressure field is obtained by using Marker-And-Cell(MAC) method. The air and water flows are simultaneously simulated in the time-marching solution procedure for the Navier-Stokes equation. The porosity technique and the density function are devised for the implementation of the three-dimensional body-boundary and the free-surface conditions, respectively. In this paper, a craft is modeled simply by three blocks containing a wing mounted on a main body horizontally, with the endplate. The numerical calculations of a WIG advancing in a calm water are performed and the WIG-generated wave profiles are also obtained. In the final paper, details of the numerical methods employed for the present study and calculated results are discussed.

  • PDF

Flow and Thermal Analyses for the Optimal Specification of Flat Tube at Radiator (라디에이터용 납작관의 최적형상 도출을 위한 열.유동해석)

  • Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1046-1055
    • /
    • 2000
  • The flow and thermal phenomena in flat tubes of radiator are analyzed numerically. To predict the characteristics of heat transfer and pressure drop, the flow analysis program for three-dimensional complex geometry is developed, which adopted an non-staggered grid system and Cartesian velocities as dependent variables of the momentum equations. Using the developed program, the effect of tube specifications on the heat transfer characteristics is investigated for various flat tubes. From this study, the following results are obtained; (1) For the same hydraulic diameter($D_h{\doteq}5.2$mm), the Nusselt numbers of three basic modeis(D, J, and H-model) are 8.71, 8.92, and 10.58, respectively, and the pressure drops of D-, J-, and H-model are predicted as $-3.08{\times}10^{-2}\;Pa,\;-3.12{\times}10^{-2}\;Pa,\;and\; -3.98{\times}10^{-2}$ Pa, (2) In case of the same flat tube specification, the fins must be brazed at upper tube surface because the heat is more vividly transferred. Therefore, it is found that the H- model is the most effective tube as a heat exchanger and these results are used as a fundamental data for the design of tube.

Geometry Effects of Capillary on the Evaporation from the Meniscus (모세관 단면 형상에 따른 계면 및 증발 특성)

  • Choi, Choong-Hyo;Jin, Songwan;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.313-319
    • /
    • 2007
  • The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries is much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four comers.

Robust Design of the Gate System for Flatness Improvement in Semi-Solid Casting Processes (반응고 주조공정에서 평면도 증대를 위한 게이트시스템의 강건설계)

  • Song, In-Ho;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Semi-solid casting(SSC) of magnesium alloys is increasingly being used to produce high quality components. This process is similar to the injection molding of plastics and is called thixomolding. Using this process, higher strength, thinner wall sections and tighter tolerances without porosity are obtained. The high strength and low weight characteristics of magnesium alloys render the high-precision fabrication of thin-walled components with large surface areas. They are widely used for the IT, auto and consumer electronics industries. However, warpage of the thin-walled sections degrade quality of the parts produced in the SCC process. To produce thin-walled magnesium alloy parts, the geometry of gating system on the quality of the finished products should be clearly studied. In this paper, to minimize warpage of the thin-walled sections, Taguchi method is applied to the optimal design of the gate geometry in the thixomolding process. Width, height, length and angle of the gating system are selected for the robust design parameters. Effectiveness of the robust design is verified through the CAE software.

A Study on the Tolerance Modeler for Feature-based CAPP (특징형상에 기반한 자동공정설계용 공차 모델러 연구)

  • Kim, Jae-Gwan;No, Hyeong-Min;Lee, Su-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • A part definition must not only provide shape information of a nominal part but also contain non-shape information such as tolerances, surface roughness and material specifications. Although machining features are useful for suitable shape information fur process reasoning in CAPP, they need to be integrated with tolerance information for effective process planning. We develop a tolerance modeler that efficiently integrates the machining features with the tolerance information fur feature-based CAPP. It is based on the association of machining features, tolerance features, and tolerances. The tolerance features in this study, where tolerances are assigned, are classified into two types; one type is a face that is a topological entity on a solid model and the other type is a functional geometry that is not referenced to topological entities. The (unctional geometry is represented by using machining features. All the data fur representing the tolerance information are stored completely and unambiguously in an independent tolerance data structure. The developed tolerance modeler is implemented as a module of a comprehensive feature-based CAPP system.

Modeling of High-speed Tapping Touque Considering Friction Force (마찰력을 고려한 고속탭핑 토크 모델링)

  • Lee, Don-Jin;Gang, Ji-Ung;Jeon, Hyeon-Bae;Kim, Seon-Ho;An, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.67-73
    • /
    • 2001
  • This paper aims at developing a torque model for the high-speed tapping with small-diameter taps. As recent industries such as automobile and information technology grows, taps smaller than 5mm in diameter are needed much more. In that occasion, the friction force between a tap surface and a workpiece plays much more important role in the tapping torque than in he larger tapping. Tapping mechanism was analysed based on the tap geometry. It has two steps : one is a forward cutting composed of the chamfered threading and full threading and the other is the backward cutting. The torque by the cutting force in the chamfered threading is calculated using the cutting area and the specific cutting force while the torque by the friction force, which is rather dominant than the cutting force both in the full threading and in the backward cutting, is calculated using the normal force on the threads and the friction coefficient. The experiment has shown that the results by the proposed torque model fit quite well with the acutal measurements within the error of 10%.

  • PDF