• Title/Summary/Keyword: surface geometry

Search Result 1,292, Processing Time 0.029 seconds

An Estimation on Area Error For Surface Roughness Advancement of Rapid Prototype by FDM (FDM에서 단면오차법을 이용한 표면예측)

  • 전재억;김수광;황양오;박후명;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1869-1872
    • /
    • 2003
  • As SLA(Sterealithography), SLS(Selective Laser Sintering), LOM(Laminated Object Manufacturing), FDM(Fused Deposition Modeling) etc. The FDM system the heart of a study and is developed by Stratasys co. ltd, in US., is small and cheap R.P. The material filament is heated until the material reaches a near-liquid state, it is pumped through a nozzle and become hand with a shape required, and this nozzle move pumping on the previously deposited material. Such FDM system that choice deposition type with X-Y plouter obtain in the thin continue layer by decreasing amount of extrusion or to central the injection amount when the head slow down at the corner, but in the process that fusion wax or resin become hand, deformation occur and it will affect the shape accuracy and the surface roughness. Such effect will depreciate quality and reliability of the product. Therefore, when the product made in actuality, the fundamental study on the basis geometry(surface, volume, line, angle) must be preceded and it have been research by many Free Form Fabrication. So, this basic object study purpose to obtain the fundamental geometry data and to enhance the surface roughness of the shape. And an operant can use the data for the progress of the surface roughness. This study research the estimation and application of the prototype surface roughness by adjustment the injection amount. And basie of this research, describe the pattern of prototype surface roughness and also used the result to estimate the surface of prototype.

  • PDF

Effects of Surface Depression on Pool Convection and Oscillation in GTAW (GTA 용접에서 용융풀의 표면 변형이 유동과 진동에 미치는 영향)

  • 고성훈;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.70-77
    • /
    • 1999
  • Surface depression in the arc welding is calculated numerically to analyze its influence on pool convection and oscillation. The magnitude of surface depression due to arc pressure on the stationary GTA pool surface is relatively small, and fluctuations of the surface and velocity are caused mainly by arc pressure. The inward flow on the surface due to the electromagnetic force and positive surface tension gradient acts to decrease surface depression. Surface depression appears to have minor effects on average flow velocity and thus pool geometry. Pool oscillation occurs due to surface vibration, and oscillation frequencies are affected mainly by the surface tension and pool width. The input parameters such as arc pressure and current have negligible effects on the oscillation frequency, and the surface tension gradient has limited effects. Since the oscillation frequency varies slightly according to penetration, pool oscillation for the partial penetration weld pool is applicable to monitor the pool width.

  • PDF

A Case Study on the Cause Analysis of Subsidence in Limestone Mine Using LiDAR-Based Geometry Model (라이다 기반 정밀 형상 모델 활용 석회석 광산 지반침하 원인분석 사례연구)

  • Hwicheol Ko;Taewook Ha;Sang Won Jeong;Sunghyun Park;Seung-tae Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.126-140
    • /
    • 2023
  • In this study, the cause of subsidence in limestone mine was analyzed using a LiDAR-based geometry model. Using UAV and ground-based LiDAR systems, a precise geometry model was constructed for the subsidence surface and mine tunnel, and the results of on-site geological survey and rock mass classification were utilized. Through the geometry model, distribution of thickness of crown pillar and faults around the subsidence area, calculation of the volume of the subsidence area and subsidence deposit, and analysis of the subsidence surface inclination were conducted. Through these analyzes, the causes of ground subsidence were identified.

Influence of Specimen Geometry and Notch on Hydrogen Embrittlement Resistance of SA372 Steel for Pressure Vessel (압력용기용 SA372강의 수소취성 저항성에 미치는 시편 형태의 영향)

  • Hee-Chang Shin;Sang-Gyu Kim;Jae-Yun Kim;Byoungchul Hwang
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.302-308
    • /
    • 2023
  • The influence of specimen geometry and notch on the hydrogen embrittlement of an SA372 steel for pressure vessels was investigated in this study. A slow strain-rate tensile (SSRT) test after the electrochemical hydrogen charging method was conducted on four types of tensile specimens with different directions, shapes (plate, round), and notches. The plate-type specimen showed a significant decrease in hydrogen embrittlement resistance owing to its large surface-to-volume ratio, compared to the round-type specimen. It is well established that most of the hydrogen distributes over the specimen surface when it is electrochemically charged. For the round-type specimens, the notched specimen showed increased hydrogen susceptibility compared with the unnotched one. A notch causes stress concentration and thus generates lots of dislocations in the locally deformed regions during the SSRT test. The solute hydrogen weakens the interactions between these dislocations by promoting the shielding effect of stress fields, which is called hydrogen-enhanced localized plasticity mechanisms. These results provide crucial insights into the relationship between specimen geometry and hydrogen embrittlement resistance.

Predicting Road Surface Temperature using Solar Radiation Data from SOLWEIG(SOlar and LongWave Environmental Irradiance Geometry-model): Focused on Naebu Expressway in Seoul (태양복사모델(SOLWEIG)의 복사플럭스 자료를 활용한 노면온도 예측: 서울시 내부순환로 대상)

  • AHN, Suk-Hee;KWON, Hyuk-Gi;YANG, Ho-Jin;LEE, Geun-Hee;YI, Chae-Yeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.156-172
    • /
    • 2020
  • The purpose of this study was to predict road surface temperature using high-resolution solar radiation data. The road surface temperature prediction model (RSTPM) was applied to predict road surface temperature; this model was developed based on the heat-balance method. In addition, using SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry-model), the shadow patterns caused by the terrain effects were analyzed, and high-resolution solar radiation data with 10 m spatial resolution were calculated. To increase the accuracy of the shadow patterns and solar radiation, the day that was modeled had minimal effects from fog, clouds, and precipitation. As a result, shadow areas lasted for a long time at the entrance and exit of a tunnel, and in a high-altitude area. Furthermore, solar radiation clearly decreased in areas affected by shadows, which was reflected in the predicted road surface temperatures. It was confirmed that the road surface temperature should be high at topographically open points and relatively low at higher altitude points. The results of this study could be used to forecast the freezing of sections of road surfaces in winter, and to inform decision making by road managers and drivers.

An Analytical Model for Deriving the 3-D Potentials and the Front and Back Gate Threshold Voltages of a Mesa-Isolated Small Geometry Fully Depleted SOI MOSFET

  • Lee, Jae Bin;Suh, Chung Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • For a mesa-isolated small geometry SOI MOSFET, the potentials in the silicon film, front, back, and side-wall oxide layers can be derived three-dimensionally. Using Taylor's series expansions of the trigonometric functions, the derived potentials are written in terms of the natural length that can be determined by using the derived formula. From the derived 3-D potentials, the minimum values of the front and the back surface potentials are derived and used to obtain the closed-form expressions for the front and back gate threshold voltages as functions of various device parameters and applied bias voltages. Obtained results can be found to explain the drain-induced threshold voltage roll-off and the narrow width effect of a fully depleted small geometry SOI MOSFET in a unified manner.

The Design and Implementation of Implicit Object Classes for Geometric Modeling System (형상 모델링을 위한 음함수 객체의 설계 및 구현)

  • Park, Sang-Kun;Chung, Seong-Youb
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.187-199
    • /
    • 2008
  • This paper describes a C++ class hierarchy of implicit objects for geometry modeling and processing. This class structure provides a software kernel for integrating many various models and methods found in current implicit modeling areas. The software kernel includes primitive objects playing a role of unit element in creating a complex shape, and operator objects used to construct more complex shape of implicit object formed with the primitive objects and other operators. In this paper, class descriptions of these objects are provided to better understand the details of the algorithm or implementation, and its instance examples to show the capabilities of the object classes for constructive shape geometry. In addition, solid modeling system shown as an application example demonstrates that the proposed implicit object classes allow us to carry out modern solid modeling techniques, which means they have the capabilities to extend to various applications.