• 제목/요약/키워드: surface friction

검색결과 2,096건 처리시간 0.026초

펨토초레이저를 이용한 알루미늄 성형다이의 미세가공에 관한 연구 (Die Surface Texturing by Femtosecond Laser for Friction Reduction)

  • 최해운;신현명
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.57-63
    • /
    • 2009
  • Interface friction in blanking dies, cold forging and extrusion of aluminum alloys is a major cause of inefficient process. This paper describes an investigation of femtosecond laser texturing for reduction of interface friction on sliding surfaces in forming process. Femtosecond direct writing technology was used to fabricate a laser micro-machined die and to create microgroove patterns with varying size and density on metal forming dies. A systematic approach to find the optimum parameters and computer simulation comparison of friction coefficients are provided to study the relation of friction coefficients and die profiles. In metal forming tests, the effectiveness of various laser-machined patterns for enhancing interface lubrication is determined.

금형의 표면정도와 가공방향에 따른 판재의 마찰특성 (Friction Characteristics of Sheets for The Surface Finish and The Stoning Directions of The Dies)

  • 김동환;조형근;김병민;오세욱;박춘달;황지선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.814-820
    • /
    • 2000
  • This papers investigates the combined effects of parameters such as die surface finish, die directionality of stoning, contact pressure and draw speed on the resulting friction factor. Also, this study show the correlation between the NN(Neural Network) and DOE (Design of Experiments) to reduce the number of experiments without the loss of the effects of parameter upon friction factor. The experiments were run in random order with at least three replicates. It was found that the directional stoning orthogonal to the pulling direction is lower friction than directional stoning parallel to the pulling direction using FCD55 die and SPCEN

  • PDF

SKD 11 금형 표면처리에 따른 AZ31 판재 마찰 특성 연구 (Study on the Friction Characteristics for AZ31 Sheet as Various Surface Treatment of SKD11)

  • 장성호;신광호;김흥규;전용준;허영무
    • 소성∙가공
    • /
    • 제19권7호
    • /
    • pp.429-434
    • /
    • 2010
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn) sheet with a thickness of 0.8 mm. Friction tests at various temperatures(R.T. to $200^{\circ}C$) and at various holding forces in the 4 type molds were carried out to investigate the coefficient of friction. A warm drawing process with a local heating and cooling technique was developed in the Mg alloy sheet forming to improve formability because it is very difficult for Mg alloy to deform at room temperature by the conventional method. So, the coefficient of friction at various mold surface treatment conditions in this study was needed to develop the Mg alloy sheet forming technology.

금형의 표면정도와 가공방향에 따른 판재의 마찰특성 (Friction Characteristics of Sheets for The Surface Finish and The Stoning Directions of the Dies)

  • 김동환;김병민;오세욱;박춘달;황지선
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.312-322
    • /
    • 2001
  • This paper investigates the combined effects of parameters such as die surface finish, die directionality of stoning contact pressure and draw speed on the resulting coefficient of friction. Also, this study show the correlation between the NN(Neural Network) and DOE(Design of Experiments) to reduce the number of experiments without the loss of the effects of parameter upon coefficient of friction. The experiments were run in random order with at least three replicates. It was found that the directional stoning orthogonal to the pulling direction is lower friction than directional stoning parallel to the pulling directi on using FCD55 die and SPCEN.

전해도금법으로 형성한 Ni-SiC 복합피막층의 특성 (Properties of Ni-SiC Composite Coating Layers Prepared by Electroplating Method)

  • 이홍기;손성호;이호영;구석본;전준미
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.160-165
    • /
    • 2006
  • Ni-SiC composite coating layers were prepared by electroplating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. It was found that the deposition rate and the codeposition of SiC in the composite coating layer increased with increasing concentration of SiC in the solution only at the early stage. Both of them reached certain maxima and then decreased with increasing concentration of SiC. Rough surface was obtained with increasing codeposition of SiC, which is probably due to the agglomeration of the SiC particle in the vicinity of surface. Vickers hardness increased with increasing codeposition of SiC and heat treatment at $300^{\circ}C$ in air for 1 hour. Wear volume decreased with increasing codeposition of SiC and friction coefficient increased with increasing codeposition of SiC at the early stage, and it became almost constant. Such wear and friction behaviors are desirable for the practical application.

미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구 (NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES)

  • 홍사훈;이재봉;조민행;이성혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

Tribological Properties of DLC for Die Applications

  • Lee, Kyu-Yong;Liu, Zhen-Hua
    • Design & Manufacturing
    • /
    • 제6권1호
    • /
    • pp.24-28
    • /
    • 2012
  • Friction and wear affect all processes involved in the extraction of materials and their conversion into finished products in the die applications such as drawing, extrusion etc. Originating phenomenon from the contact surface between the tool and workpiece, they are usually a hindrance to materials process operations which usually result in damaging the tools, increasing energy consumption, the contamination of processed material by wear particles and also some problems associated with technologies to control friction and wear. The most well established method to control friction and wear is by the application of lubricant such as fluorocarbon. Besides, a surface technique so-called surface modification can be applied to solve the tribology problems of the die applications for both the economical and ecological reasons. In this article, we applied DLC(diamond-like carbon) thin film on alumina ceramic for HT test using the PIID(plasma ion immersion deposition), 4 groups of test specimens were tested up to $200^{\circ}C$ which is a little higher than the normal working temperature of die application. Pin-on-disc tribo-tester was used to test the friction and surfaces were characterized by SEM and EDS and else, the morphology changes of DLC coatings were studied. The present work indicated that the DLC had a great potential to reduce the friction and wear in the alumina die application without lubricants.

  • PDF