• Title/Summary/Keyword: surface free energy

Search Result 641, Processing Time 0.035 seconds

An Estimation of Springing Responses for Recent Ships

  • Park In-Kyu;Lee Soo-Mok;Jung Jong-Jin;Yoon Myung-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.173-178
    • /
    • 2004
  • The estimation of springing responses for recent ships are carried out and application to a ship design are described. To this aim, springing effects on hull girder were re-evaluated including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder by the superposition method. The strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level and added asymptotic interpolation along the high frequency range. Several applications to the existing ships were carried out. They are Bishop and Price's container ship, S-175 container ship, large container, VLCC and ore carrier. One of them is compared with ship measurement result while another with that of model test. Comparison between analytical solution and numerical one for homogeneous beam type artificial ship shows good agreement. It is found that most springing energy came from high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega^{-3}\;instead\;of\;\omega^{-4}\;or\;\omega^{-5}$ for springing calculation.

  • PDF

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.

Spatial mapping of screened electrostatic potential and superconductivity by scanning tunneling microscopy/spectroscopy

  • Hasegawa, Yukio;Ono, Masanori;Nishio, Takahiro;Eguchi, Toyoaki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.12-12
    • /
    • 2010
  • By using scanning tunneling microscopy/spectroscopy (STM/S), we can make images of various physical properties in nanometer-scale spatial resolutions. Here, I demonstrate imaging of two electron-correlated subjects; screening and superconductivity by STM/S. The electrostatic potential around a charge is described with the Coulomb potential. When the charge is located in a metal, the potential is modified because of the free electrons in the host. The potential modification, called screening, is one of the fundamental phenomena in the condensed matter physics. Using low-temperature STM we have developed a method to measure electrostatic potential in high spatial and energy resolutions, and observed the potential around external charges screened by two-dimensional surface electronic states. Characteristic potential decay and the Friedel oscillation were clearly observed around the charges [1]. Superconductivity of nano-size materials, whose dimensions are comparable with the coherence length, is quite different from their bulk. We investigated superconductivity of ultra-thin Pb islands by directly measuring the superconducting gaps using STM. The obtained tunneling spectra exhibit a variation of zero bias conductance (ZBC) with a magnetic field, and spatial mappings of ZBC revealed the vortex formation [2]. Size dependence of the vortex formation will be discussed at the presentation.

  • PDF

Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment (레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석)

  • Kim H.I.;Kim W.Y.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구)

  • Jung, Jae-Uk;Nam, Woo-Seok;Yoon, Ki-June;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.85-88
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2$-free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The propane decomposition rate used carbon black N33O as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600{\sim}800^{\circ}C$, paropane gas velocity of $1.0 U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The carbon which was by-product of methane decomposition reaction was deposited on the catalyst surface that was observed by SEM. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

Electrochemical Studies on Corrosion Inhibition Behaviour of Synthesised 2-acetylpyridine 4-ethyl-3-thiosemicarbazone and Its Tin(IV) Complex for Mild Steel in 1 M HCl Solution

  • Hazani, Nur Nadira;Mohd, Yusairie;Ghazali, Sheikh Ahmad Izaddin Sheikh Mohd;Farina, Yang;Dzulkifli, Nur Nadia
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Corrosion inhibition by synthesised ligand, 2-acetylpyridine 4-ethyl-3-thiosemicarbazone (HAcETSc) and its tin(IV) complex, dichlorobutyltin(IV) 2-acetylpyridine 4-ethyl-3-thiosemicarbazone ($Sn(HAcETSc)BuCl_2$) on mild steel in 1 M hydrochloric acid (HCl) was studied using weight loss measurement, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The inhibition efficiency increases by increasing the inhibitor concentrations. The polarisation study showed that both synthesised compounds were mixed type inhibitors. The electrochemical impedance study showed that the presence of inhibitors caused the charge transfer resistance to increase as the concentration of inhibitors increased. The adsorption of these compounds on mild steel surface was found to obey Langmuir's adsorption isotherm with the free energy of adsorption ${\Delta}G{^o}_{ads}$ of -3.7 kJ/mol and -7.7 kJ/mol for ligand and complex respectively, indicating physisorption interaction between the inhibitors and 1 M HCl solution.

Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method (통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin

  • Meng, Wei;Bachilo, Sergei M.;Parol, Jafarali;Weisman, R. Bruce;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.259-270
    • /
    • 2022
  • This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.

Rational Design of Binder-Free Fe-Doped CuCo(OH)2 Nanosheets for High-Performance Water Oxidation

  • Patil, Komal;Jang, Su Young;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.237-242
    • /
    • 2022
  • Designing and producing a low-cost, high-current-density electrode with good electrocatalytic activity for the oxygen evolution reaction (OER) is still a major challenge for the industrial hydrogen energy economy. In this study, nanostructured Fe-doped CuCo(OH)2 was discovered to be a precedent electrocatalyst for OER with low overpotential, low Tafel slope, good durability, and high electrochemically active surface sites at reduced mass loadings. Fe-doped CuCo(OH)2 nanosheets are made using a hydrothermal synthesis process. These nanosheets are clumped together to form a highly open hierarchical structure. When used as an electrocatalyst, the Fe-doped CuCo(OH)2 nanosheets required an overpotential of 260 mV to reach a current density of 50 mA cm-2. Also, it showed a small Tafel slope of 72.9 mV dec-1, and superior stability while catalyzing the generation of O2 continuously for 20 hours. The Fe-doped CuCo(OH)2 was found to have a large number of active sites which provide hierarchical and stable transfer routes for both electrolyte ions and electrons, resulting in exceptional OER performance.

Computations of Wave Energy by Stream Function Wave Theory (흐름함수파이론에 의한 파랑 에너지의 계산)

  • Lee, Jung Lyul;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.67-75
    • /
    • 1986
  • This paper introduces the nonlinear Stream Function Wave Theory for design waves efficiently to compute the wave energy and energy transport quantities and to analyze the effects of nonlinearities on them. The Stream Function Wave Theory was developed by Dean for case of the observed waves with assymmetric wave profiles and of the design waves with symmetric theoretical wave profiles. Dalrymple later improved the computational procedure by adding two Lagrangian constraints so that more efficient convergence of the iterative numerical method to a specified wave height and to a zero mean free surface displacement resulted. And the Stream Function coefficients are computed numerically by the improved Marquardt algorithm developed for this study. As the result of this study the effects of nonlinearities on the wave quantities of the average potential energy density, the average kinetic energy density result in overestimation by linear wave theory compared to the Stream Function Wave Theory and increase monotonically with decreasing $L^*/L_O$ and with increasing $H/H_B$. The effects of nonlinearities on the group velocity and the wavelength quantities result in underestimation by linear wave theory and increase monotonically with increasing $H/H_B$. Finally the effect of nonlinearity on the average total energy flux results in overestimation for shallow water waves and underestimation for deep water waves by linear wave theory.

  • PDF