• Title/Summary/Keyword: surface forces

Search Result 1,168, Processing Time 0.031 seconds

A Study of Enhancing Reliability for Determining the Resistance to Surface Wetting by Imaging Process (이미징 기반의 발수도 판별을 통한 측정 신뢰도 향상에 관한 연구)

  • Kim, Sung-wuk;Chun, Sang Hee;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.483-489
    • /
    • 2017
  • The purpose of this study was to propose useful suggestions for enhancing reliability to determine the resistance against surface wetting, KS K 0590, by an imaging process. We validated the standard spray test rating chart for determining quantification standard using JAVA script-based imaging process program. All of the acquired images were processed with the image software, Image J (NIH, Nethesda, MD, USA). The study results are as follows. We established the surface area measurement-based quantitative criteria for determining resistance to surface wetting. The standard spray test rating chart was converted into a numerical standard which leads easy-to-determine ratings. We also validated the procedure for imaging treatment by analyzing quantitative data. We introduced the fluorescence image for determining ratings by enabling threshold settings and binary image conversion as an optimal imaging process. It is expected that imaging-based determination for resistant to surface wetting will serve as an accurate and reliable method for KS K 0590.

3D Numerical Simulation of Ice Accretion on a Rotating Surface

  • Mu, Zuodong;Lin, Guiping;Bai, Lizhan;Shen, Xiaobin;Bu, Xueqin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.352-364
    • /
    • 2017
  • A novel 3D mathematical model for water film runback and icing on a rotating surface is established in this work, where both inertial forces caused by the rotation and shear forces due to the air flow are taken into account. The mathematical model of the water film runback and energy conservation of phase transition process is established, with a cyclical average method applied to simulate the unsteady parameters variation at angles of attack. Ice accretion on a conical spinner surface is simulated and the results are compared with the experimental data to validate the presented model. Then Ice accretion on a cowling surface is numerically investigated. Results show that a higher temperature would correspond to a larger runback ice area and thinner ice layer for glaze ice. Rotation would enhance the icing process, while it would not significantly affect the droplet collection efficiency for an axi-symmetric surface. In the case at angle of attack, the effect of rotation on ice shape is appreciable, ice would present a symmetric shape, while in a stationary case the shape is asymmetric.

Treatment of Edentulous Patient with Neutral Zone Technique : A Clinical Case (무치악 환자 에서 Neutral Zone 방법을 적용한 임상 증례)

  • Kim, Yongsik;Lee, Byunguk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 2001
  • The prosthodontic treatment of severely resorbed edentulous patients has been one of the frustrating areas due to extensive loss of tissues. The integrated neuromuscular balance among tongue, lip, and cheek is compromised. The retention, stability, and support are the three major factors to influence the clinical outcome. Fish described a denture as having three surface, with each surface playing an independent and important role in the over all fit, stability, and comfort of the denture. He recommended that the polished surface should be a series of inclines so that pressure from muscular activity will retain dentures. Within the denture space there is an area that has been termed the neutral zone. The neutral zone is that area in the mouth where, during function, the forces of the tongue pressing outward are neutralized by the forces of the cheeks and lips pressing inward. According to Jacobson and Krol, neuromuscular control interacts to provide retention and the relationship of polished surface of denture base to the surrounding muscular structure of orofacial capsule facilitates the stability and retention. This neutral zone concept has been demonstrated with various modification by a number of authors. The theory used to develop the denture base contours is based on the belief that the muscle should functionally mold not only the border but the entire polished surface. Lott and Walsh reported the clinical success on complete mandibular dentures with application of neutral zone concept. A number of studies demonstrated that denture stability and retention are more dependent on correct position of the teeth and correct contour of external surfaces of the denture in a severely resorbed alveolar ridge. This article presents a prosthodontic approach to treatment of a edentulous patient using neutral zone technique to improve the retention and stability of the prosthesis.

  • PDF

Electrostatic Interaction between Zirconia and 11-Mercaptoundecylphosphoric-acid Layer Formed on Gold Surfaces (지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.625-630
    • /
    • 2018
  • The electrostatic interactions were investigated between the zirconia and the 11-Mercaptoundecylphosphoric-acid layer formed on gold surfaces for their complex structures. For the investigation, the atomic force microscope was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the Derjaguin-Landau-Verwey-Overbeek theory to estimate the potential and charge density of the surfaces for each condition. The concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law of mass action. The pH dependence was explained with the ionizable groups on the surface. It was found that the 11-Mercaptoundecylphosphoric-acid layer had higher values for the surface charge densities and potentials than the zirconia surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the layer.

Role of Cel5H protein surface amino acids in binding with clay minerals and measurements of its forces

  • Renukaradhya K. Math;Nagakumar Bharatham;Palaksha K. Javaregowda;Han Dae Yun
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.17.1-17.10
    • /
    • 2021
  • Our previous study on the binding activity between Cel5H and clay minerals showed highest binding efficiency among other cellulase enzymes cloned. Here, based on previous studies, we hypothesized that the positive amino acids on the surface of Cel5H protein may play an important role in binding to clay surfaces. To examine this, protein sequences of Bacillus licheniformis Cel5H (BlCel5H) and Paenibacillus polymyxa Cel5A (PpCel5A) were analyzed and then selected amino acids were mutated. These mutated proteins were investigated for binding activity and force measurement via atomic force microscopy (AFM). A total of seven amino acids which are only present in BlCel5H but not in PpCel5A were selected for mutational studies and the positive residues which are present in both were omitted. Of the seven selected surface lysine residues, only three mutants K196A(M2), K54A(M3) and K157T(M4) showed 12%, 7% and 8% less clay mineral binding ability, respectively compared with wild-type. The probable reason why other mutants did not show altered binding efficiency might be due to relative location of amino acids on the protein surface. Meanwhile, measurement of adhesion forces on mica sheets showed a well-defined maximum at 69±19 pN for wild-type, 58±19 pN for M2, 53±19 pN for M3, and 49±19 pN for M4 proteins. Hence, our results demonstrated that relative location of surface amino acids of Cel5H protein especially positive charged amino acids are important in the process of clay mineral-protein binding interaction through electrostatic exchange of charges.

Wing-In-Ground Effect on Free Surface

  • Kim, Yong-Hwan;Rhee, Shin-Hyung;Jee, Sang-Min
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2007
  • This study aims the observation of wing-in-ground effect near free surface. Numerical computations are carried out to observe the deformation of free surface and the effects on lift and drag. The detailed flow fields around two- and three-dimensional wings with NACA 0012 section are observed from the results of a commercial CFD program, FLUENT, and the local deformations of free surface are obtained by applying a Rankine panel method. In the present cases, the small deformation of free surface under the wings is observed, but different forces are found between solid wall and free surface when the speed of wings becomes large.

The Effects of Surface Energy and Roughness on Adhesion Force (표면에너지와 거칠기가 응착력에 미치는 영향)

  • Rha, Jong-Joo;Kwon, Sik-Cheol;Jeong, Yong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1335-1347
    • /
    • 2006
  • Surface energies calculated from measured contact angles between several solutions and test samples, such as Si wafer, $Al_2O_3$, $SiO_2$, PTFE(Polytertrafluoroethylene), and DLC(Diamond Like Carbon) films, based on geometric mean method and Lewis acid base method. In order to relate roughness to adhesion force, surface roughness of test samples were scanned large area and small by AFM(Atomic Force Microscopy). Roughness was representative of test samples in large scan area and comparable with AFM tip radius in small scan area. Adhesion forces between AFM tip and test samples were matched well with order of roughness rather then surface energy. When AFM tips having different radius were used to measure adhesion force on DLCI film, sharper AFM tip was, smaller adhesion force was measured. Therefore contact area was more important factor to determine adhesion force.

Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive (HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface (3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템)

  • 한헌수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

Development of Sea Surface Wind Monitoring System using Marine Radar (선박용 레이다를 이용한 해상풍 모니터링 시스템 개발)

  • Park, Jun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • A wave buoy commonly used for measurements in marine environments is very useful for measurements on the sea surface wind and waves. However, it is constantly exposed to external forces such as typhoons and the risk of accidents caused by ships. Therefore, the installation and maintenance charges are large and constant. In this study, we developed a system for monitoring the sea surface wind using marine radar to provide spatial and temporal information about sea surface waves at a small cost. The essential technology required for this system is radar signal processing. This paper also describes the analytical process of using it for monitoring the sea surface wind. Consequently, developing this system will make it possible to replace wave buoys in the near future.