• Title/Summary/Keyword: surface finishing materials

Search Result 213, Processing Time 0.023 seconds

An Experimental Study on the Evaluation of a Restrain-Performance for Concrete covered with Surface-Finishes against Carbonation. (표면마감재를 시공한 콘크리트의 탄산화 억제성능 평가에 관한 실험적 연구)

  • Lee, Sang-Hyun;Lee, Han-Seoung;Kang, In-Seok;Jung, Hae-Moon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.265-268
    • /
    • 2006
  • Many studies about carbonation experiments which result in deterioration of the Reinforced Concrete(from now on RC) structure have being done by now. But most of the studies are about RC itself without thinking of finishing materials. So in this study, we experimented to know restrain-effects which each finishing material has for carbonation. On the basis of experiments, we estimated velocity coefficient for carbonation. We want to show basis data about how much each surface-finish has a restrain-performance against carbonation.

  • PDF

Criteria of Impact Resistance of Lightweight Wall by the Large Soft Body (건식 경량벽체의 연질 충격체에 의한 내충격성 판정기준에 관한 연구)

  • Kim, Ki Jun;Song, Jung Hyeon;Choi, Soo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.102-103
    • /
    • 2014
  • Due to the nature of the existing load, the criteria of assessing the intensity of the lightweight wall's impact resistance has been though of as obscure. The current study, therefore, focuses on the standardized assessment of the impact resistance to the force of the large soft body applying to the lightweight wall. The gypsum board wall showed a low level of the maximum residual displacement. It is, however, required to be careful about the selection of the finishing process since the high level of the maximum displacement is likely to cause harm to finishing materials. Unlike the gypsum board, the ALC block wall displayed a considerable rigidity while showing almost no maximum residual displacement. Even with the low level of the maximum displacement due to the stiffness, the ALC block wall is still likely to be affected by the vibration derived from any impact on the surface, which demands a need for additional study. The future experimental study, accordingly, will focus on the impact of the vibration on finishing materials, consequently leading to the accurate prediction of the possibility of potential damage to the lightweight wall caused by the large soft body.

  • PDF

A Reproduction Study on Finishing Layer of Double Bass, Maggini Giovanni Paolo (마찌니 조반니 파올로 더블베이스의 마감층 재현연구)

  • Lee, Chaehoon;Yoo, Seunghwan;Chung, Yongjae
    • Conservation Science in Museum
    • /
    • v.20
    • /
    • pp.93-106
    • /
    • 2018
  • The musical instruments displayed in Korean Museums consist of various materials such as wood, stone, metal, leather, and soil. As for instruments manufactured of organic materials, as time passed, they became damaged due to physical, chemical and biological effects. In order to restore these instruments, studies on the materials as well as the manufacturing techniques should be simultaneously conducted because of the characteristics of sound making instruments. In this study, 17th century Double bass were chosen as the model for the restoration study. The type of wood was identified and the finishing layer was analyzed. To investigate the finishing layer, the surface observation was conducted and the component analysis was also conducted by using both FT-IR and SEM-EDS. As a result, the species of wood were identified as the maple trees. In case of the finishing layer of it, the diluted Goma Lacca, a type of resin, with alcohol as the main solvent was covered for varnishing layer. These results were combined to determine the restoration of Double bass Maggini Giovanni Paolo varnishing layer and by this Violin was made.

Optimization of Decolorizing and Carding Condition for Recycle Materials of Colored Waste Silk Fabrics (폐견직물의 재활용을 위한 탈색과 개섬조건의 최적화)

  • Lee, Youn-Eung;Lee, Sun-Kun;Joo, Chsang-Whan
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.42-50
    • /
    • 2005
  • Silk fabrics are widely used as high quality cloth, interior, quilting and bedding materials because of having excellent touch, drape, resilience and low specific gravity characteristics. But, many waste silk materials are produced during the reeling, spinning, weaving, dyeing and finishing processes. From this fact, the recycle of waste silks is interested in studying for the application of industrial textile materials such as filter, oil absorbent and wound protector. Thus, this research has surveyed the decolorizing and carding characteristics in order to recycle the colored waste silk materials. As the results, the carding condition of waste silk fabrics was optimized with different fiber lengths and curding passage. In addition, the fiber failure mechanism from the wasted silk microdamage caused by carding process was investigated. Also it was found that longitudinal and transverse cracks, abrasion and pilling were formed on the surface of wasted silk fibers.

High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin (Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Do, Jeong-Yun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Engineering Ceramics (엔지니어링 세라믹스의 경면연마를 위한 효율적인 슈퍼피니싱 조건의 결정)

  • Kim, Sang-Kyu;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.76-81
    • /
    • 2014
  • The Engineering ceramics have some excellent properties as materials for modern mechanical and electrical components. It is, however, not easy to polish them efficiently because they are strong and hard. This study is carried out to obtain a mirror surface on engineering ceramics by surperfinishing with high efficiency. To achieve this, we conducted a series of polishing experiments using representative engineering ceramics, such as $Al_2O_3$, SiC, $Si_3N_4$ and $ZrO_2$, using diamond abrasive film from the perspective of oscillations peed, the rotational speed of the workpiece, contact roller hardness, contact pressure and feed rate. Furthermore, the polishing efficiency and characteristics for engineering ceramics are discussed on the basis of optimal polishing time and surface roughness. Our results confirmed that efficient superfinishing conditions and polishing characteristics of engineering ceramics can be determined.

The Production Technology of Surface Fine Grain Steels by Controlled Rolling and Cooling Technology (제어압연에 의한 표면미세립강의 제조 기술)

  • 신정호;박상덕;이정환;이용희;장병록
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.188-197
    • /
    • 1999
  • Grain refinement of the structural steels was selected as the most effective method to meet improvement of strength and toughness without heat treatment. So, the future research and developing direction of ultra fine grain steels are more and more required to response to the production of eco - materials(environmental consciousness - materials) In this paper, the product of surface fine grain steels by CRCT and Inverse Transformation Method by warm deformation of martensite is carried out in order to improve the production process of Dowel Bar. It is possible to obtain surface ultra fine grain steel, when warm deformation of martensite formed after quenching is carried out from 730$^{\circ}C$ to 800$^{\circ}C$ in the finishing rolling step. The characters of surface with ultra fine grain steel is showing the cementite particles inside the ferrite grain and fine ferrite grain of about 1.2$\mu\textrm{m}$ in size.

  • PDF

Acid Pickling/polishing of AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • This article reports a new chemical bath for preparing a mirror-like surface of AZ31 Mg alloy. In order to find an appropriate chemical polishing solution, four different acidic solutions of sulphuric acid, nitric acid, acetic acid and a specially designed mixture of nitric acid and acetic acid were investigated in view of the changes in surface appearance, roughness and dissolution rate of AZ31 Mg alloy. The surface scales on AZ31 Mg alloy were readily removed by all the acidic solutions, but a reflective surface was produced only by etching in the specially designed solution, and only after a specific etching time. The surface roughness increased with etching time in sulphuric acid, nitric acid, and acetic acid, but it lowered after a specific etching time in the specially designed mixture of nitric acid and acetic acid. Dissolution rate of the alloy in the specially designed mixture of nitric acid and acetic acid appeared to be more than twice than that in separate nitric acid or acetic acid. In this work, we recommend the mirror-like surface of AZ31 Mg alloy obtained by polishing for an optimum time in a mixture of nitric acid and acetic acid for following surface finishings, chemical conversion coating, electroplating, electrophoretic painting and anodizing treatment.

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Study on the effect of the surface rolling condition to the surface roughness (표면 Rolling시 작업조건이 표면조도에 미치는 영향)

  • 강명순;김희남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.68-76
    • /
    • 1986
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness and hardness of materials. In this study, three NACHI6000 ZZ bearing were used for surface rolling tool on the mild steel and high carbon steel. The purpose of this study is to investigate the effects of rolling speed, feed rate and contact pressure on the surface roughness. The following results have been obtained with the mild steel and high carbon steel. 1. The roller finishing method has increased surface roughness from 2.4 .mu.m Ra at initial ground surface to 0.17 .mu.m Ra-0.4 .mu.m Ra. 2. The contact pressure has influenced greatly on the surface roughness. There is an optimal contact pressure. 3. As the rolling speed and the feed rate decrease, the surface roughness improves. 4. The optimal contact pressure for the good surface roughness of SS40 and STC 3 has been at 213 Kgf/Cm$^{2}$ and 220 Kgf/Cm$^{2}$ respectively.

  • PDF