• 제목/요약/키워드: surface error

검색결과 2,000건 처리시간 0.033초

측면 연삭가공에 있어서 퀄축강성변화가 가공현상에 미치는 현상 (The Effect on the Machining Phenomenon due to the Change of the Quill Rigidity in a Side-Cut Grinding)

  • 김창수;서영일;이종찬;정성환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.33-37
    • /
    • 1995
  • A side-cut grinding generates a machining error by the decrease of the quill rigidity. In this paper, The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity is investigated experimentally. The slenderness ratio of the quill is a significant factor to analyse the change of the grinding force and machining error.

  • PDF

엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측 (In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling)

  • 최종근;양민양
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF

Surface Approximation Utilizing Orientation of Local Surface

  • Ko, Myeong-Cheol;Sohn, Won-Sung;Choy, Yoon-Chul
    • 한국멀티미디어학회논문지
    • /
    • 제6권4호
    • /
    • pp.698-706
    • /
    • 2003
  • The primary goal of surface approximation is to reduce the degree of deviation of the simplified surface from the original surface. However it is difficult to define the metric that can measure the amount of deviation quantitatively. Many of the existing studies analogize it by using the change of the scalar quantity before and after simplification. This approach makes a lot of sense in the point that the local surfaces with small scalar are relatively less important since they make a low impact on the adjacent areas and thus can be removed from the current surface. However using scalar value alone there can exist many cases that cannot compute the degree of geometric importance of local surface. Especially the perceptual geometric features providing important clues to understand an object, in our observation, are generally constructed with small scalar value. This means that the distinguishing features can be removed in the earlier stage of the simplification process. In this paper, to resolve this problem, we present various factors and their combination as the metric for calculating the deviation error by introducing the orientation of local surfaces. Experimental results indicate that the surface orientation has an important influence on measuring deviation error and the proposed combined error metric works well retaining the relatively high curvature regions on the object's surface constructed with various and complex curvatures.

  • PDF

측정대상물의 표면조도에 따른 광파이버 센서 특성고찰 (The Characteristics of Fiber Optic Sensor on the Surface Roughness of Target)

  • 박한수;정택구;홍준희;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.283-286
    • /
    • 2002
  • In fiber optic sensor, the error of the measurement is influenced by the surface roughness of the target and surroundings, especially the outside light. To reduce or modify this error, the sensitivity of the fiber optic sensor and the noise change by the surface roughness of the target should be known. The purpose of this paper is to observe the sensitivity of the fiber optic sensor and the noise according to the surface roughness of the target.

  • PDF

측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건 (Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy)

  • 류시형;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Relationship between Surface Sag Error and Optical Power of Progressive Addition Lens

  • Liu, Zhiying;Li, Dan
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.538-543
    • /
    • 2017
  • Progressive addition lenses (PAL) have very wide application in the modern glasses market. The unique progressive surface can make a lens have progressive refractive power, which can meet the human eye's different needs for distance-vision and near-vision. According to the national glasses fabrication standard, the difference between actual optical power after fabrication and nominal design value should be less than 0.1D over the lens effective area. The optical power distribution of PAL is determined directly by the surface. Consequently, the surface processing accuracy requirement is proposed. Beginning from the surface expressions of progressive addition lenses, the relationship equations between the surface sag and optical power distribution are derived. They are demonstrated through tolerance analysis and test of an example progressive addition lens with addition of 2.09D (5.46D-7.55D). The example addition surface is fabricated under given accuracy by a single-point diamond ultra-precision machine. The optical power of the PAL example is tested with a focal-meter after fabrication. The optical power addition difference between test result and design nominal value is 0.09D, which is less than 0.1D. The derived relationship between the surface error and optical power is verified from the PAL example simulation and test result. It can provide theoretical tolerance analysis proof for the PAL surface fabricating process.

비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어 (Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface)

  • 안병천;장효환
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

촉침에 의한 표면 거칠기 측정 오차 해석 (Analysis of Measuring Error of Surface Roughness by Contact Stylus Profilometer)

  • 조남규;권기환
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.174-181
    • /
    • 1999
  • This paper describes the effect of the stylus tip size on the shape error in surface topography measurement. To analyze the distortional effect of an actual surface geometry origination from the finite stylus size, the surface is modeled as a sinusoid and the stylus tip as a circle. The magnitude of this distortion is defined as the ration of standard deviation, and this is expressed as an analytic function of the stylus tip radius and the geometrical parameter of a sinusoid. In this paper, the spectrum analysis of the profile is applied to investigate the distortional effect due to the mechanical filtering of the stylus in the frequency domain. and, the cumulative power spectrum is proposed to assess the shape error of measured data according to the various stylus tip sizes. From these results, a new method to select proper stylus tip radius is proposed.

  • PDF

지지 면 조건에 따른 무릎관절의 관절 위치 재현능력 비교 (Comparison of the Joint Position Sense at Knee Joint According to Surface Conditions)

  • 홍영주;원종혁;권오윤
    • 한국전문물리치료학회지
    • /
    • 제14권3호
    • /
    • pp.90-96
    • /
    • 2007
  • The purpose of this study was to compare the joint position sense at the knee joint at 3 different surface conditions by using the active knee joint angle reproduction test in the standing position. Twenty healthy volunteers (10 males and 10 females) age 20~29 years were recruited for this study. The knee joint position senses were assessed at three different surface conditions: on the floor (stable condition), TOGU (soft condition), and seat fit (unstable condition) in a closed kinetic chain. Testing orders were selected randomly. The absolute angle error was defined as the absolute difference between target angles ($30^{\circ}{\sim}45^{\circ}$ knee flexion) and subject perceived angle of the knee flexion. One way ANOVA was used to compare the absolute angle of error among 3 different conditions. The Independent t-test was used to compare the absolute angle of error between male and female. The error angles were significantly different among surface conditions ($1.3^{\circ}{\pm}1.2^{\circ}$ for the floor, $2.1^{\circ}{\pm}0.9^{\circ}$ for the TOGU, and $4.4^{\circ}{\pm}1.8^{\circ}$ for the seat fit, p<.05). There was no significant difference in error angle between male and female. In conclusion, the joint position sense of the knee joint in the closed kinetic chain decreased at unstable surface conditions. The result of this study indicates that surface conditions should be considered when assessing and training the joint position sense of the knee joint in clinical setting.

  • PDF