• Title/Summary/Keyword: surface deterioration

Search Result 684, Processing Time 0.026 seconds

Surface Deterioration Phenomena in Polyethylene under Corona Discharge (Corona 방전에 의한 Polyethylene의 표면열화현상)

  • 성영권;송진수;민남기
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.82-90
    • /
    • 1975
  • This study investigated the deterioration phenomena of the Polyethylene surface contaminated with organic(Saccharose) or inorganic(NaCl) matters through electrical and optical experiments. And also these experimental results relatively well coincided with which was treated by theoretical process. On the electrical experiment, relation between electric field intensity in corona discharge and time reached to the breakdown, and relation between total amount of charges discharged and increment of applied voltage were investigated. On the optical experiment, discharge time dependence of surface deterioration rate and process of surface deterioration in the X-ray diffraction pattern were investigated. It was concluded that chemical effects by the corona discharge deteriorated insulation characteristics of Polyethylene surface.

  • PDF

Deterioration Diagnosis of Surface and Coating Layer for Maintenance Managements of the Membrane Structure (막구조 건축물의 유지관리를 위한 표면 및 코팅층의 열화 진단)

  • Kang, Joo-Won;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2011
  • This paper contains of descriptions of deterioration diagnosis of the surface and a coating layer for maintenance managements of large spatial structures with membrane structure. Membrane is a roofing material of the structures that its performance of durability including its performance of chemical resistance and corrosive resistance is considered to be highly important. In general, the items of diagnosis for maintenance managements such as membrane extensively include the diagnosis of deterioration of the membrane surface, of a coating layer of membrane, the diagnosis of deterioration between a coating layer and fiber, of overall surface of membrane, of the class of ropes, of reinforced belts, and of the cover of rubber. The object of this study that needs maintenance managements of the membrane with PVC and FIFE which are commonly used and shows the diagnosis results of deterioration of the surface and a coating layer.

Evaluation on Surface Scaling and Frost Resistance for concrete Deteriorated due to Cyclic Freezing and Thawing with Inherent Chloride

  • Kim, Gyu Yong;Cho, Bong Suk;Lee, Seung Hoon;Kim, Moo Han
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.177-185
    • /
    • 2007
  • The purpose of this study is to evaluate freezing-thawing and surface scaling resistance in order to examine the frost durability of concrete in a chloride-inherent environment. The mixing design for this study is as follows: 3 water binder ratios of 0.37, 0.42, and 0.47; 2-ingredient type concrete (50% OPC concrete and 50% ground granulated blast-furnace slag), and 3-ingredient type concrete (50% OPC concrete, 15% fly ash, and 35% ground granulated blast-furnace slag). As found in this study, the decrease of durability was much more noticeable in combined deterioration through both salt damage and frost damage than in a single deterioration through either ofthese; when using blast-furnace slag in freezing-thawing seawater, the frost durability and surface deterioration resistance was evaluated as higher than when using OPC concrete. BF 50% concrete, especially, rather than BFS35%+FA15%, had a notable effect on resistance to chloride penetration and freezing/expansion. It has been confirmed that surface deterioration can be evaluated through a quantitative analysis of scaling, calculated from concrete's underwater weight and surface-dry weight as affected by the freezing-thawing of seawater.

Making Method of Deterioration Map and Evaluation Techniques of Surface and Three-dimensional Deterioration Rate for Stone Cultural Heritage (석조문화유산의 손상지도 제작방법과 표면 및 3차원 손상율 평가기법)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.251-260
    • /
    • 2011
  • This study focus on the suggestion of standard legend, the process system on making method of deterioration map, the development of crack index (CI), and the evaluation techniques of surface and 3D deterioration rate for stone cultural heritage. The standard legends of deterioration forms were made using a common graphic program after crack, blistering, scaling, break-out, granular disintegration, and perforation were subdivided. The deterioration map improved accuracy and reliability on deterioration range using 3D digital restoration and high resolution photograph mapping technique. Also, quantitative deterioration evaluation of stone cultural heritage was carried out developing the crack index, and the 3D deterioration rate of a break-out part was calculated by virtual restoration modeling. As a quantitative deterioration evaluation of Magoksa Temple stone pagoda based on the results described above, the north face showed high deterioration rate of bursting crack (1.70), hair crack (1.34), scaling (20.2%) and break out (13.0%), and the 3D deterioration rate of first roof stone was 6.7%.

Analysis on Material Characteristics of Restored Areas with Mortar and Basis of Surface Deterioration on the Stupa of State Preceptor Jigwang from Beopchensaji Temple Site in Wonju, Korea (원주 법천사지 지광국사탑 복원부 모르타르 재료학적 특징 및 표면손상 기초 해석)

  • Chae, Seung A;Cho, Ha Jin;Lee, Tae Jong
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.411-425
    • /
    • 2021
  • The Stupa of State Preceptor Jigwang from Beopcheonsa Temple Site in Wonju (National Treasure) is a representative stupa of the Goryeo Dynasty, with outstanding Buddhist carvings and splendid patterns, clearly indicating its honoree and year of construction. However, it was destroyed by bombing during the Korean War (1950-1953) and repaired and restored with cement and reinforcing bars in 1957. The surface condition of the original stone shows long-term deterioration due to the m ortar used in past restorations. In order to identify the exact causes of deterioration, the m ortar and surface contaminants on the original stone were analyzed. Portlandite, calcite, ettringite, and gypsum from the mortar were identified, and its ongoing deterioration was observed through pH measurements and the neutralization reaction test. Analysis of surface contaminants identified calcite and gypsum, both poorly water-soluble substances, and their growth in volume among rock-forming minerals was observed by microscopy. Based on those results, semi-quantitative analysis of Ca and S contents significantly influencing the formation of salt crystals was conducted using P-XRF to analyze the basis of surface deterioration, and cross-validation was performed by comparing the body stone affected by the mortar and the upper stylobate stone unaffected by the mortar. Results indicate that the elements are directly involved in the surface deterioration of the body stone.

Experimental Study on the Frost Resistance of Concete Product (콘크리트제품의 동결저항성에 관한 실험적 연구)

  • Sugawara, Takashi;Tsukinaga, Yhoichi;Lee, Sanghun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.91-91
    • /
    • 2011
  • The quality of the surface layer in concrete structures plays an important role in the durability of the concrete. The concrete factory products are made as they improve the appearance of the surface and compressive strength in need. A common criterion to judge the quality of concrete products frequently seen in our daily life appears to be "beauty" in terms of consistent shaping. However, as for most concrete curb in such areas where a large amount of anti-freezing agents(NaCl) and ice and snow melting agents(CaCl2) are spread over roads to ensure road safety during the winter season, since deterioration advances from the surface, scaling is seen on the surface concrete due to deterioration which combined freezing damage and salt damage. Especially, In cold northern districts, the spreading amount of deicing salts increases by regulation of studded tire use, and the scaling of the concrete products, the various parts of concrete structures for roads is increasing in recent years. In this study, L-shape concrete curb were targeted, the permeable form method with the commercial permeable sheet was applied to it and the improvements of the quality were examined. By the permeable form method, surface layers got strengthened, which prevented permeation of the deterioration factor from the outside, and the scaling resistance of the upper surface where the permeable sheet was applied improved exceedingly. It will be expected by applying the permeable form method to various concrete products that frost resistance improves and scaling damage decreases.

  • PDF

Evaluation on the Performance of Surface Performance Improving Agent for the Deterioration Prevention of Concrete Structures (콘크리트 구조물의 열화방지를 위한 표면 성능 개선제의 성능 평가)

  • Ryu, Gum-Sung;Koh, Kyoung-Taek;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.177-186
    • /
    • 2005
  • The latest concrete structure has showed that the deterioration of durability has been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the concrete which has deteriorated durability have been taken. Among them, it has been often used that surface treatment which cuts off the deterioration factors of durability by protecting the surface of concrete. However, troubles such as fracture and rupture in the repair layer have been reported as time goes by due to the difference between the organic repair material like epoxy and concrete properties. Researchers have been developing the repair material which can cut off the deterioration factors of durability such as $CO_2$ gas, chloride ion and water by making the formation of concrete elaborate through the reaction with calcium ion when the surface improving agent is coated on the concrete. The main ingredient of that is inorganic substance which is the same as the concrete property. This study was evaluated the surface improving agent for permeability, watertightness, air-permeability, chemical resistance and elution resistance. As a result, it has been reported that the surface improving agent improves watertightness and air-permeability by penetration more than 10mm within concrete. Therefore, it is concluded that the surface improving agent developed in this research prevents deterioration of concrete durability when it is coated on the concrete structure.

Accelerated Carbonation of Concrete Deteriorated by Freezing and Thawing (동결융해 작용을 받은 콘크리트의 촉진중성화 특성)

  • Sohn, Yu-Shin;Kim, Gyu-Yong;Kim, Han-June;Park, Chan-Gyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.221-224
    • /
    • 2004
  • Several factors of concrete durability decline factor are acted as complex deterioration and is happened not that happen by simplicity deterioration. Specially, in case of sea construction, as complex salt damage, carbonation and freezing & thawing, concrete surface and pore structure is deteriorated. Therefore, analyzing concrete carbonation and pore structure after freezing and thawing test by fresh water and sea water in this research, we wish to study about acceleration of decline of durability and complex deterioration by concrete surface deterioration in sea environment.

  • PDF

Corrosion Properties of Reinforced Concrete with Types of Surface Cover and Covering Depth under the Combined Deterioration Environments (복합열화 환경하에서 표면피복종류 및 피복두께에 따른 철근콘크리트의 부식특성)

  • Kim, Moo-Han;Kwon, Young-Jin;Kim, Young-Ro;Kim, Jae-Hwan;Jang, Jong-Ho;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.119-126
    • /
    • 2004
  • Generally, reinforced concrete is one of the most commonly used structural materials and it prevents corrosion of steel bar by high pH of interior, But, as time elapsed, reinforced concrete structure become deteriorated by many of combined deterioration factors and environmental conditions. And, there are large number of deteriorate mechanism of the reinforced concrete structure and it acts complexly. It is recognized that steel bar corrosion is the main distress behind the present concern regarding concrete durability. In this study, to institute combined deterioration environments, established acceleration condition and cycle for combined deterioration environments has a resemblance to environments which are real structures placed. After that to confirm corrosion properties of reinforced concrete due to permeability with covering depth and types of surface cover under combined deterioration environments, measured carbonation velocity coefficients, chloride ion diffusion coefficients, water absorption coefficients, air permeability coefficients and electric potential, corrosion area ratio, weight reduction, corrosion velocity of steel bar. The results showed that an increase in age also decrease carbonation velocity coefficients, increase Chloride ion diffusion coefficients and increases water absorption coefficients. As well, an increase in age also increases corrosion of steel bar. Data on the development of corrosion velocity of steel bar with types of surface cover made with none, organic B, organic A, inorganic B, and inorganic A is shown. As well, permeability and corrosion velocity of steel bar with covering depth is superior to 10mm than 20mm. And it is confirmed permeability and corrosion properties of steel bar are closely related.