• Title/Summary/Keyword: surface damage

Search Result 2,318, Processing Time 0.041 seconds

Hydrogeochemical Environmental Research in Nitrate Contamination in Alluvial Fan Area Groundwater in Tsukui, Central Japan (일본 츠꾸이 선상지 지하수의 질산성 질소 오염에 대한 수문지구화학적 연구)

  • Okazaki, Masanori;Ham, Young-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.431-435
    • /
    • 2004
  • A nitrate-contaminated groundwater was hydrogeochemically investigated to estimate the factors controlling groundwater quality in an alluvial fan area. Even though monthly groundwater levels increased with monthly rainfalls, the monthly $NO_3^--N$ concentrations in groundwater showed a small variation, mostly exceeding a maximum contaminant level of 10 mg $L^{-1}$ in environmental quality standards for groundwater during 2003. The 2003 annual groundwater recharge was 1,730 mm =20,056 mm-18,326 mm. Where 20,056 mm and 18,326 mm are annual sum of daily increase and decrease in ground water level. However, the annual sum of increase in ground water level (20,056 mm) was approximately 10 times higher than annual rainfall. Moreover, the annual sum of daily ground water level decrease (-18,326mm) showed that a large amount of groundwater was discharged with $NO_3^-$-contamination. Hydrogeochemically, a large amount of groundwater input and output through the alluvial fan area were observed after rainfall with a considerably high concentration of $NO_3^-$. Consequently, this alluvial fan area including forest area reflects on the evidence under the condition of 'nitrogen excess' or 'nitrogen saturation'. In addition, such a large amount of groundwater outflow can cause environmental damage in surface water, associated with $NO_3^-$- contamination. This study also expects that this hydrogeochemical data will be useful for water management.

Interfacial Adhesion and Reliability between Epoxy Resin and Polyimide for Flexible Printed Circuit Board (연성인쇄회로기판의 에폭시수지와 폴리이미드 사이의 계면접착력 및 신뢰성 평가)

  • Kim, Jeong-Kyu;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • The effects of KOH pretreatment and annealing conditions on the interfacial adhesion and the reliability between epoxy resin and polyimide substrate in the flexible printed circuit board were quantitatively evaluated using $180^{\circ}$ peel test. The initial peel strength of the polyimide without the KOH treatment was 29.4 g/mm and decreased to 10.5 g/mm after 100hrs at $85^{\circ}C/85%$ R.H. temperature/humidity treatment. In case of the polyimide with annealing after KOH treatment, initial peel strength was 29.6 g/mm and then maintained around 27.5 g/mm after $85^{\circ}C/85%$ R.H. temperature/humidity treatment. Systematic X-ray photoelectron spectroscopy analysis results showed that the peel strength after optimum annealing after KOH treatment was maintained high not only due to effective recovery of the polyimide damage by the polyimide surface treatment process, but also effective removal of metallic ions and impurities during various wet process.

Occurrence and Damage by Thrips on Greenhouse-Cultivated Fig (시설재배 무화과에서 총채벌레의 발생과 피해)

  • Kim, Dong-Hwan;Cho, Myoung-Rae;Yang, Chang-Yeol;Kang, Taek-Jun;Kim, Hyeong-Hwan;Jeon, Sung-Wook
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.485-490
    • /
    • 2014
  • This study was conducted to assess the occurrence and damages by thrips on greenhouse-cultivated fig in Hwaseong, Gyeonggi Province, Korea. We identified the collected species as Thrips tabaci Lindeman, Frankliniella occidentalis Pergande, and F. intonsa Trybom. The density of thrips in the greenhouses during the summer months was monitored using yellow sticky traps; T. tabaci showed the highest density, followed by F. occidentalis and F. intonsa. The damages by thrips were characterized by stunted plant growth because of delayed discoloration of the pericarp, and development of rough fruit surface. Stereomicroscopic observation on the fruit flesh revealed the growth of gray mold at the damaged area, as well as the dead bodies and exuviae of thrips. The rates of fig fruit damages per month, were 18.2%, 9.7%, 2.9%, and 1.3% in July, August, September, and October, respectively.

Pest Lists and Their Damages on Mango, Dragon Fruit and Atemoya in Jeju, Korea (제주도에서 재배되는 망고, 용과, 아떼모야의 주요 해충과 피해)

  • Choi, Kyung San;Yang, Jin Young;Park, Young Mi;Kim, Sora;Choi, Hwalran;Lyu, Dongpyo;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.45-51
    • /
    • 2013
  • Tropical plants of mango(Mangefera indica), dragon fruit(Hylocereus undatus), and atemoya(Annona cherimola ${\times}$ A. squamosa) are cultivated in Jeju, Korea. A pest survey on those tropical fruits was conducted from 2008 to 2011. Major pests of Mango were thrips, aphid, mealybug, and lepidoptera species. Thrips palmi and Scirtothrips dorsalis were the most important pests in mango fields. T. palmi mainly injured the leaf but S. dorsalis injured the leaf and fruit. Lepidoptera mango pests injured leaves but some larva of Adoxophyes honmai injured fruit surface around the stem. Aphid pests, Aphis gossypii and Myzus persicae, injured the shoots and Pseudococcus kraunhiae occurred on the stem and fruit. Ant species, A. gossypii, and S. litura, were important pests on dragon fruit. Ants and aphid occurred and injured the stem, flower, and fruit. Spodoptera litura larva severely injured the stem. Among the atemoya pests, S. litura and Homona magnanima caused severe damage.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Fruit Quality and Fruit Locule Air Hole of Kiwifruit (Actinidia deliciosa cv. Hayward) Affected by Early Defoliation (조기낙엽이 참다래 '헤이워드' 과실 바람들이와 품질에 미치는 영향)

  • Kwack, Yong-Bum;Kim, Hong-Lim;Choi, Young-Hah;Lee, Jae-Han;Kim, Jin-Gook;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.229-234
    • /
    • 2012
  • BACKGROUND: The fruit quality and flowering characteristics of Kiwifruit (A. deliciosa cv. Hayward) in the following year is known to be affected by the extent and timing of defoliation of the current year. In korea, the production of kiwi, which is a perennial, straggling deciduous warm-temperate fruit, is often restricted by wind damage due to typhoons resulting to defoliation at the middle season of its growing period. In this paper, we report the effect of the different timing of defoliation and severities at the current season to the kiwifruit quality. METHODS AND RESULTS: Twenty seven-year-old 'Hayward' trees grown under polyethylene film rain-shelter were defoliated in different days from August to September at seven day-intervals. In each day, 0, 25, 50, 75 and 100% of leaves were removed from the trees. Fruits from each treatment were classified into four floating types (L: lying in bottom, S: standing on bottom, F: floating and SF: floating at the surface of water) by submerging them into tap water. Defoliation of kiwifruit trees in August and September caused air holes in locules of inner pericarp. Increased number of air hole in locules of a fruit was observed in floating types F and SF, and most of the air holes were located in stem end. The defoliation of trees in August significantly reduced the ratio of L-floating type fruits, which have the least number of locule air holes. The extent of defoliation also affected the distribution of the four types, the more leaves removed, the less L-floating type fruits harvested. The weight of fruits from trees defoliated in August was lower than that of fruits from September. Soluble solids content decreased as the number of locule air holes increased. Negative correlations were observed between the extent of defoliation and the weight and soluble solids content of fruits. CONCLUSION: Early defoliation effect on kiwifruit locule air hole occurrence and fruit quality were more severe in August than in September. And also if the defoliation severity is over 25%, severe fruit quality reduction expected to happen due to increase of fruit locule air hole in the inner pericarp.

Recycle Possibility of the Stone-Dust in Quarry as Subbase Layer Materials of the Road (도로 보조기층재로서 채석장 석분토의 재활용가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.279-287
    • /
    • 2007
  • An ore of stone obtained from quarry lose its about 60% such as the muck and the stone-dust during the process of making the architectural block, the crushed aggregate and so on. A part of the muck is only reutilized for the crushed aggregate as road pavement materials, while the most of the muck in the shape of powder is mixed with water and then it is deposited in a sludge tank. The muck in the shape of powder is called the stone-dust. If the stone-dust is discharged and sprayed, an ecosystem will have terrible damage because the seepage of surface water, the flow of ground water and the movement of air are not occurred smoothly by packing the void of soils. As the Waste Management Law (2003) in Korea, the stone-dust is sorted out the industrial waste and the most of that is dumped in ground. Therefore, the establishments of an efficient recycling plan are necessary through the improvement of engineering properties of the stone-dust. To investigate the possibility of recycle and improvement for the stone-dust, the stone-dust and natural soils are sampled from six quarries in Korea. The various soil tests are performed by use of the mixed soils with the stone-dust content ratio. As the result of various soil tests, the recycle possibility of the stone-dust is analyzed as subbase layer materials of the roads.

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

Wood Anatomical Characteristics of Domestic Red Pine (Pinus densiflora) Infested by Pine wood Nematode (Bursaphelenchus xylophilus) (소나무재선충 감염 소나무의 목재해부학적 특성)

  • Ahn, Sye-Hee;Jeon, Mun-Jang;Eom, Young-Geun;Oh, Sei-Chang;Lee, Mi-Rim
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • The pine wilt disease is one of the most serious forest diseases that kill the pine trees, and the study on the invasion and movement of the pine wood nematode within the tree is very important for understanding the inhabitation of pine wood nematode. In this relation, the microscopic observation was carried out to study the place of inhabitation and movement of pine wood nematode within the infested wood. In result, the rays were mainly infested by pine wood nematode and showed dark discoloration due to their necrosis in cross, radial and tangential surface. Also, the intensive damage was found in the resin canals. On the other hand, some traumatic resin canals in tangential band were identified in the sapwood near the cambium. In the ray, the pine wood nematode occurred more commonly in the ray parenchyma cell and fusiform ray with horizontal resin canal than in the ray tracheid and uniseriate ray without horizontal resin canal, respectively. The pine wood nematode was thought to move from ray to tracheid through the large natural opening, window-like pit, in the cross-field, neither through the small natural opening, bordered pit, in the tracheid nor through the tracheid wall by creating a bore hole.

A Study on Chloride Threshold Level of Polymer Inhibitive Coating Containing Calcium Hydroxide (수산화칼슘을 혼입한 폴리머 방청 코팅의 부식 임계치 향상에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.713-719
    • /
    • 2008
  • Various types of coatings have been developed for use as reinforcement in concrete and to resist chloride environment. The most commonly used coatings are inhibited and sealed cement slurry coating, cement polymer compositing coating and epoxy coating. Cement slurry offers passive protection, epoxy coating offers barrier protection whereas polymer coating offers both passive protection and barrier protection. Moreover, damage during handling of the steel may result in disbondment of the epoxy coating, which would increase the risk of localized corrosion. In the present study, inhibiting technique was used to increase the calcium hydroxide content at the interface up to 20%. Calcium hydroxide provides a high buffering capacity that resists a local fall in pH and thus maintains the alkaline environment necessary to prevent chloride corrosion. This study examines the use of a calcium hydroxide coating on the steel surface to enhance the pH buffering capacity of steel-concrete interface. Finally, the chloride threshold level (CTL) of polymer inhibitive coating calcium hydroxide is evaluated.