• 제목/요약/키워드: surface cracks

검색결과 1,293건 처리시간 0.024초

층상형 비대칭성 복합재료의 탄성/소성 불일치가 접촉 균열의 개시에 미치는 영향 (Effect of Elastic/Plastic Mismatch on the Contact Crack Initiation in Asymmetric Layered Composite)

  • 김상겸;이기성
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.195-198
    • /
    • 2005
  • The role of elastic/plastic mismatch on the contact crack initiation is investigated for designing desirable surface-coated asymmetric layered composites. Various layered composites such as $Si_3N_4$ ceramics on $Si_3N_4+BN$ composite, soda-lime glass on various substrates with different elastic modulus for the analysis. Spherical indentation is conducted for producing contact cracks from the surface or interface between the coating and the substrate layer. A finite element analysis of the stress fields in the loaded layer composites enables a direct correlation between the damage patterns and the stress distributions. Implications of these conclusions concerning the design of asymmetric layered composites indicate that the elastic modulus mismatch is one of the important parameter for designing layered composite to prevent the initiation of contact cracks.

  • PDF

구형 인덴테이션 평가에 의한 비대칭적 층상형 세라믹 부품의 설계연구 (The Optimum Design Study of Asymmetric Layered Ceramic Component by Spherical Indentation)

  • 이기성;김태우;김철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.297-301
    • /
    • 2004
  • The optimum design against contact crack initiation is investigated to find major parameters in designing desirable surface-coated asymmetric layered components. Hard ceramic coated soft materials with various elastic modulus mismatch are prepared for the analysis. Spherical indentation is conducted for producing contact cracks from the surface or interface between the coating and the substrate layer. A finite element analysis of the stress fields in the loaded layer components enables a direct correlation between the damage patterns and the stress distributions. Implications concerning the design of asymmetric layered components indicate that the coating thickness and the elastic modulus mismatch are important parameters for designing layered component to prevent the initiation of contact cracks.

  • PDF

콘크리트 균열측정에 대한 비파괴시험의 적용 (The Application of Non-destructive Method in Measuring of Concrete Crack)

  • 민정기;김성완;성찬용;조일호
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.124-129
    • /
    • 1998
  • The ultrasonic pulse measurements can be used to detect the development of cracks in concrete structures and to check deterioration due to frost or chemical action. An estimate of the depth of a visible crack at the surface can be obtained by measuring the transit times that across the crack for two different arrangements of the transducers placed on the surface. In this paper, the concrete cracks that artificially introduced crack of width 1, 2mm and depth 20, 40, 60, 80mm were measured by Tc-To, Direct and Indirect Method. The test results indicate that the Tc-To Method is the most useful in measuring crack of concrete structures. And the crack depth calculated by the Direct and Indirect Method is shown bigger than artificially introduced real crack depth.

  • PDF

CANDU 압력관 건전성평가를 위한 결함해석 (Defect Assessment for Integrity Evaluation of CANDU Pressure Tubes)

  • 김영진;석창성;박윤원
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.731-740
    • /
    • 1995
  • The objective of this paper is to develop defect assessment technology for integrity evaluation of CANDU pressure tubes. In fracture mechanics analysis, three-dimensional and two-dimensional (line-spring model) finite element analyses were performed to obtain the stress intensity factor for axial and circumferential surface cracks. In leak before break (LBB) analysis, heat transfer analyses for through-wall cracks were performed by considering the cooling effect and the LBB application time was computed. It was shown that the analytical results obtained in this study provide less-conservative but accurate solution for defect assessment of CANDU pressure tubes.

2.5Y-TZP의 안정성에 관한 연구 (Thermal Stability of 2.5Y-TZP under Low-Temperature Aging)

  • 장성도;오경영
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.226-232
    • /
    • 1990
  • The degradation phenomena and thermal stability of 2.5Y-TZP at low-temperature were studied by means of XRD, Raman spectra and microstructural analysis. The degradation of heat-treated 2.5Y-TZP at 20$0^{\circ}C$-20hr in air was observed on the TZP surface, be caused by the cracks generated from tlongrightarrowm transformation, and the cracks was propagated inside the polycrystalline body. The ZrO2 grain boundaries and grains near the crack were revealed as if these were diffused and dissolved. And it was also observed mlongrightarrowt transformation as the degraded TZP was refired at 140$0^{\circ}C$, and it was thought to be the fact that the moisture in atmosphere during the aging process contributed to the degradation. The thermal stability of 2.5Y-TZP was improved dramatically with an addition of 3w/o CeO2 or a provision of high Y2O3 concentration on the TZP surface.

  • PDF

소성온도가 도자기의 기계적 특성 및 접촉손상에 미치는 영향 (Effect of Firing Temperature on Mechanical Property and Contact Damage in Pottery)

  • 정연길
    • 한국세라믹학회지
    • /
    • 제35권12호
    • /
    • pp.1343-1350
    • /
    • 1998
  • A study is made of mechanical properties of unglazed matrix as a funtion of sintering temperature and crack patterns in layer structur pottery consisting of glaze and substrate and in matrix which is sintered at 120$0^{\circ}C$ and 130$0^{\circ}C$ respectively. The mechanical properties of matrix are increased due to density and vitrification to 130$0^{\circ}C$ The interface of glazed bilayer reveals the reactive intermediate layer. Herzian indentation testing is used to investigate the evolution of damage modes as a function of load. In the materials sintered at 120$0^{\circ}C$ quasi-plastic deformation is developed at the matrix and the cone-like cracks initiate at the glazing top surface and additionally upward-extending transverse cracks initiate at the internal in-just initiate at the glazing top surface which pass through the interface with increasing of indentation load. Finally the dominant damage mode shifts from substrate quasi-plasticity to coating fracture with increasing sintering temperature.

  • PDF

동적재료모델을 활용한 열간 후방압출된 Ti-6Al-4V튜브의 성형결함 해석 (Assessment of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tubes using Dynamic Materials Model)

  • 염종택;심인규;박노광;홍성석;심인옥
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.566-571
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. Dynamic material model(DMM) including Ziegler's instability criterion was employed to predict the forming defects such as shear band, inner and/or surface cracks. This approach was coupled to the internal variables generated from FE analysis. The simulation results fur the backward extrusion were compared with the experimental observation. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The formation of forming defects in the extruded tube was attributed to non-uniform distribution of strain, strain rate and temperatures in the extruded tubes for the given test conditions.

콘크리트 균열 보수용 에폭시의 시공조건에 따른 성능 (Performance of Epoxy Resins for Repairing of Cracks in Concrete with Application Conditions)

  • 이찬영;심재원;김홍배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.813-816
    • /
    • 2004
  • This study was performed to investigate bonding performance of epoxy resins for repairing of cracks in concrete, as a part of project to establish quality control standard for epoxy resins. In the slant shear strength test for hard and soft type epoxy, hard type was higher about 3 times than soft one. From the results, it is thought that hard type is suitable for load carrying. Injection of epoxy resin in the notch made flexural strength increase about $47\%$ over the specimen that epoxy resin is not injected. There were no differences in bonding performances with viscosity. Application of epoxy resin on the wet concrete surface made slant shear strength decrease about $46\%$, but similar performance to the case of application on the dry surface appeared by using epoxy resin for wet condition.

  • PDF

충격공진을 이용한 콘크리트 상태 평가를 위한 주성분 분석의 적용 (Application of the Principal Component Analysis to Evaluate Concrete Condition Using Impact Resonance Test)

  • 윤영근;오태근
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.95-102
    • /
    • 2019
  • Non-destructive methods such as rebound hardness method and ultrasonic method are widely studied for evaluating the physical properties, condition and damage of concrete, but are not suitable for detecting delamination and cracks near the surface due to various constraints of the site as well as the accuracy. Therefore, in this study, the impact resonance method was applied to detect the separation cracks occurring near the surface of the concrete slab and bridge deck. As a next step, the principal component analysis were performed by extracting various features using the FFT data. As a result of principal component analysis, it was analyzed that the reliability was high in distinguishing defects in concrete. This feature extraction and application of principal component analysis can be used as basic data for future use of machine learning technique for the better accuracy.

콘크리트 교면포장 균열 보수를 위한 하이브리드 에폭시 박층포장 보수공법 개발에 관한 실험적 (Experimental study on the Development of Thin-layer Pavement Method using Hybrid Epoxy for Concrete Bridge Deck Crack Repair)

  • 김한솔;김영관;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.79-80
    • /
    • 2022
  • A method for repairing cracks using low-viscosity resins has been proposed as a construction method that can quickly repair roads from deterioration. However, when the viscosity of the epoxy resin is high, there is a limit in that it is difficult for the material to penetrate into microcracks and cracks in the concrete top plate. In this study, an epoxy thin-layer pavement repair method was developed using low-viscosity PMMA (Poly methyl methacrylate) to repair microcracks on the pavement surface and pavement layer and reinforce the pavement surface. Materials necessary for the thin-layer packaging method were developed, and performance was evaluated to meet the epoxy binder quality standards. As a result, all materials met the required performance.

  • PDF