• Title/Summary/Keyword: surface cracks

Search Result 1,297, Processing Time 0.031 seconds

Synthesis of YSZ Thin Films by PECVD (PECVD에 의한 YSZ(Yttria Stabilized Zirconia)박막 제조)

  • Kim, Gi-Dong;Sin, Dong-Geun;Jo, Yeong-A;Jeon, Jin-Seok;Choe, Dong-Su;Park, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.234-239
    • /
    • 1999
  • A Abstract Yttria-stabilized zirconia(YSZ) thin films were synthesized by plasma enhanced chemical vapor deposition process. $Zr[TMHD]_4$ $Y[TMHD]_3$ precursors and oxygen were used with the deposition temperature of $425^{\circ}C$ and rf power ranging 0-100 watt. Effects of the deposition parameters were studied by X-ray diffraction and thickness anal­ysis. YSZ thin films have cubic crystal structure with (200) orientation. From the results of EDX analysis, the converte ed content of TEX>$Y_2O_3$ was determined to be 0-36%, and the film thickness was increased with bubbling temperature which is considered to be due to increasing TEX>$Y_2O_3$ flux. The depth profiles of Zr, Y and 0 appeared relatively $\infty$nstant through film thickness. Columnar grains of $1000~2000\AA$ grew vertical to the substrate surface for the case of Ar carri­er gas. In case of He carrier gas, the grain size was observed to be about $1000~2000\AA$. X-ray diffraction data showed the increase of lattice constant with TEX>$Y_2O_3$ content. It was that the presence of the cracks formed during film deposition, partially released the stress generated by the increase of lattice constant.

  • PDF

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Effect of Moisture Content on Physical and Chemical Characteristics of Italian Ryegrass Cube (수분 함량이 이탈리안 라이그라스 큐브의 물리적 및 화학적 성상에 미치는 영향)

  • Moon, Byeong Heoun;Park, Hyung Soo;Shin, Jong Seo;Park, Byeong Ki;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.34-40
    • /
    • 2016
  • The objective of this study was to determine the effect of moisture content on the physical and chemical characteristics of Italian ryegrass cube. Cube quality according to moisture contents (15, 20, 25, and 30%) was determined. Cubes made with 15 to 20% moisture showed a little cracks. But, the amount of powder generate from these cubes were lower by 10 to 16% compared to other cubes made with 25 to 30% moisture contents. The highest hardness at 159 kg/f was obtained when the cube was made with 15% moisture content and the lowest was 70 kg/f when the cube was made with 30% moisture content. The electrical loading and surface temperature were increased when moisture content was decreased. The chemical compositions of cube were differ from those of raw materials. Crude protein (CP) and ether extract (EE) contents were increased after cubing works. However, crude fiber (CF), acid detergent fiber (ADF), and neutral detergent fiber (NDF) contents were decreased after cubing. The crude ash content was not significantly (p > 0.05) different between raw material and cube. Higher moisture content resulted in higher crude protein content. However, crude fiber and crude ash content were not significantly (p > 0.05) different between each other. The contents of ADF and NDF were the lowest in cubes made with 30% moisture content. Our results suggest that the proper moisture content of Italian ryegrass cubing is recommended to be 15 to 20% and that cubing works should help increase forage quality.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (화재시 하중재하에 따른 콘크리트의 열적특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Jung, Jae-Young;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.66-74
    • /
    • 2009
  • When a fire occurs, the concrete structure's strength decreases by the increasing temperature under the fire in certain condition of constant load. And, the ratio of the axial force is changed by such decreased strength so that the structure is deformed. In this research, considering such case, we have conducted an actual fire test for the concrete lining with constant loading condition and various fire conditions. The specimen adopts the shape condition for small practical specimen defined by the EFNARC and we used 24MPa, 40MPa and 50MPa to analyze the thermal properties by the strength. The ratio of loading is imposed by a certain loading condition based on 20% and 40% of the sectional stress in concrete and MHC Fire is selected to realize the thermal impact of the concrete by rapid increasing temperature. As the result of the experiment, in the same ratio of loading, the 50MPa specimen shows more cracks and spalling as time goes on. The area damaged by the fire, according to the functional criteria of the concrete lining under the fire in ITA, does not satisfy with the standard in lack of 50mm depth from the heating surface at total 200mm lining.

Preparation and Characterization of Electrospun PAN/TiO2 Fiber Mat by Electron Beam Irradiation (전자선 조사에 의한 PAN/TiO2 전기방사 나노섬유 제조 및 특성분석)

  • Kang, Phil-Hyun;Jeun, Joon-Pyo;Seo, Dong-Kwon;Kim, Hyun-Bin;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • Abstract: In this study, PAN/$TiO_2$ fiber mats were fabricated from polyacrylonitrile (PAN) and titanium(IV) butoxide ($Ti(OBu)_4$) by an electrospinning method with various solution concentrations, applied voltages and solution flow rates. The fiber mats were irradiated with an electron beam to induce structural crosslinking and enhance photocatalytic activity. As a result, uniform and bead-free fibers without pits or cracks on surface were obtained at 5 wt% of $Ti(OBu)_4$ solution with 15 kV and 0.02 mL/min flow rate. The PAN/$TiO_2$ fiber mats were irradiated with an electron beam of 1.14 MeV acceleration voltage, 4 mA of current and $1{\times}10^4kGy$. Electron beam irradiation was enhanced the photocatalytic activity of PAN/$TiO_2$ nano fiber mat. The photocatalytic activity of the PAN/$TiO_2$ fiber mat was analyzed by degradation of methylene blue and volatile organic compounds.

A Study on Stability according to the Conservation Environment for Fixative of Korean Mural Painting Layers (한국 흙벽화 채색층 고착제의 보존환경에 따른 안정성 연구)

  • Jin, Byung-hyuk;Wi, Koang-chul
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.150-171
    • /
    • 2013
  • The most important part of conservation treatment of murals is to preserve them against the risk of a damage by injecting fixative into them when the painting loses its cohesion or powderization of pigments occurred due to occurrence of cracks inside the painting layer. However, studies on the stability of fixative used for painting layers of murals are still insufficient. This study manufactured a mural as a specimen and colored it with four kinds of pigments including oyster shell white, cinnabar, malachite and red clay and applied four kinds of fixative, including, Paraloid $B-72^{(R)}$, Caparol-$binder^{(R)}$, glue and Hydoxypropyl $cellulose^{(R)}$. artificially generated environmental changes in temperature, humidity and ultraviolet rays which may occur after the completion of conservation treatment. Then the changes in physical properties were observed in multifaceted ways such as color stability, contact angle, brilliance, adhesive strength and surface. As a result, this study found that ultraviolet rays and hot?humid environment have a large impact on color stability causing changes in brightness and chroma of all painting layers where the fixative were applied, except for oyster shell white and are considered the main factors of decomposition by accelerating the aging process of fixatives applied. In comparison to the synthetic resins that were also tested in this study, the traditional glue showed satisfactory results in terms of color stability and influence preservation and the hydrophile property. As it showed exceptionally outstanding adhesive strength in all painting layers in the aspect of adhesive strength, it is considered to be highly stabile for the fixation treatment of painting layers of mural.

A Comparison Analysis on the Efficiency of Solar Cells of Shingled Structure with Various ECA Materials (다양한 ECA 소재를 활용한 shingled 구조의 태양전지 효율 비교 분석)

  • Jang, Jae Joon;Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Lim, Donggun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Modules using 6 inch cells have problems with loss due to empty space between cells. To solve this problem made by shingled structure which can generate more power by utilizing empty space by increasing the voltage level than modules made in 6inch cell. Thus, in this paper, the c-Si cutting cells were produced using nanosecond green laser, and then the ECA was sprayed and cured to perform cutting cell bonding. Three types of ECA materials (B1, B2, B3) with Ag as the main component were used, and experimental conditions varied from 5 to 120 seconds of curing time, 130 to $210^{\circ}C$ of curing temperature, and 1 to 3 of curing numbers. As a results of experiments varying curing time, B1 showed efficiency 19.88% in condition of 60 seconds, B2 showed efficiency 20.15% in 90 seconds, and B3 showed efficiency 20.27% in 60 seconds. In addition, experiments with varying curing temperature, It was confirmed highest efficiency that 20.04% in condition of $170^{\circ}C$ with B1, 20.15% in condition of $150^{\circ}C$ with B2, 20.27% in condition of $150^{\circ}C$ with B3. These are because the Ag particles are densely formed on the surface to make the conduction path. After optimizing the conditions of temperature and curing time, the secondary-tertiary curing experiments were carried out. as the structural analysis, conditions of secondary-tertiary curing showed cracks that due to damp heat aging. As a result, it was found that the ECA B3 had the highest efficiency of 20.27% in condition of 60 seconds of curing time, $150^{\circ}C$ of curing temperature, and single number of curing, and that it was suitable for the manufacture of Solar cell of shingled structure rather than ECA B1 and B2 materials.

Nondestructive Deterioration Diagnosis and Environmental Investigation of the Stupa of the Buddhist Monk Soyo in Baegyangsa Temple, Jangseong (장성 백양사 소요대사탑의 비파괴 훼손도 진단과 입지환경 검토)

  • Kim, Yuri;Lee, Myeong Seong;Chun, Yu Gun;Lee, Mi Hye;Jwa, Yong-Joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.52-63
    • /
    • 2016
  • The Stupa of Buddhist Monk Soyo in Baegyangsa temple, Jangseong, was erected to pay a tribute to the achievement of the Buddhist monk Soyo, who worked for Baegyangsa temple as a chief monk, and is a bellshaped stupa with the detailed pattern of a Korean traditional buddhist bell. It is composed of pinkish-grey sandstone and the body of the stupa was damaged by longitudinal cracks on the front and back areas and the exfoliation caused break-out in the most part of the sculpture on the left and right areas. According to the ultrasonic test and infrared thermography analysis for physical deterioration diagnosis, most weathering aspects appeared on the body of the stupa and some exfoliated part that could not be seen with the naked eye was detected 6.1% and 5.9% on the left and right side respectively. Hyperspectral imaging analysis was also carried out to assess biological deterioration. According to the result, the surface of the stupa was covered 71.8 ~ 79.9% with vegetation like algae, lichen and moss. NDVI(Normalized Difference Vegetation Index) was higher relatively on the bottom part near the ground, right and back areas of the stupa. Therefore conservation treatment for the exfoliated part and bio-deterioration is necessary and the environment condition needs to be fixed to prevent extra damages on the stupa.

Evaluation of the Pull-out Resistance of the SMA Wire Connector (SMA 와이어를 이용한 연결재의 인발저항성능 평가)

  • Jung, Chi-Young;Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • Precast concrete (PC) structure is one of the type of the structures which is made in a facility prior to installing it to a construction field. The contact surfaces between two PC structures should be treated for obtaining enough binding force by inducing prestressing force. However, in the many cases, the contact surface causes the crack and leakage of water. These cracks and water leakage can cause the corrosion of the rebar, and the corrosion of the rebar can severely reduce the long-term durability. In this study, the SMA wire connector is suggested to solve the problem with the contact surfaces between two PC structures. The pull-out resistance of the suggested SMA wire connector is evaluated by conducting the tests to find the effect of the number of wires, shape of connector part, and shape memory effect. As a result of this study, the empirical formula is suggested to estimate the pull-out resistance related with the effects of the shape of the connector, shape memory effect, and the adhesive force. The validity between the estimated pull-out resistance and the measured value is confirmed.

Three-dimensional digital recording of the conservation treatment and form analysis of an iron ring pommel (철제 환두부 보존처리 과정의 3차원 디지털기록 및 형상변화 분석)

  • Choi, Hyoryeong;Hong, Seonghyuk;Jo, Younghoon;Cho, Namchul
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.85-94
    • /
    • 2021
  • Conservation treatment of metallic artifacts contaminated with corrosion and foreign substances requires changes in the shape, characteristics, weight and thickness of the artifacts. Thus far, recording the changes after conservation treatment has mainly been performed through visual observation and photography, which lacks any quantitative description of the changes. In this study, the processes of removing foreign substances, joining cracks, and restoring an affected area were recorded using 3D scanning and then quantitatively analyzed to identify changes in form due to conservation treatment. The volume change after the conservation process was calculated based on the results of the 3D scanning, and numerical data on the changes to the form was analyzed. It was revealed that the foreign or corroded substances removed after the conservation accounted for 18.1 cm3, which is approximately 52% of the total volume of the ring pommel, and those substances were removed from about 98% of the surface of the ring pommel. This study confirmed that 3D form analysis was useful for recording the processes of conservation treatment and analyzing the results. It is therefore believed that this methodology can be applicable to not only metal artifacts, but to cultural heritage items in a range of materials.