Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.1.047

Preparation and Characterization of Electrospun PAN/TiO2 Fiber Mat by Electron Beam Irradiation  

Kang, Phil-Hyun (Radiation Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Jeun, Joon-Pyo (Radiation Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Seo, Dong-Kwon (Radiation Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Kim, Hyun-Bin (Radiation Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Nho, Young-Chang (Radiation Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Publication Information
Polymer(Korea) / v.36, no.1, 2012 , pp. 47-52 More about this Journal
Abstract
Abstract: In this study, PAN/$TiO_2$ fiber mats were fabricated from polyacrylonitrile (PAN) and titanium(IV) butoxide ($Ti(OBu)_4$) by an electrospinning method with various solution concentrations, applied voltages and solution flow rates. The fiber mats were irradiated with an electron beam to induce structural crosslinking and enhance photocatalytic activity. As a result, uniform and bead-free fibers without pits or cracks on surface were obtained at 5 wt% of $Ti(OBu)_4$ solution with 15 kV and 0.02 mL/min flow rate. The PAN/$TiO_2$ fiber mats were irradiated with an electron beam of 1.14 MeV acceleration voltage, 4 mA of current and $1{\times}10^4kGy$. Electron beam irradiation was enhanced the photocatalytic activity of PAN/$TiO_2$ nano fiber mat. The photocatalytic activity of the PAN/$TiO_2$ fiber mat was analyzed by degradation of methylene blue and volatile organic compounds.
Keywords
electron beam; electrospinning; polyacrylonitirile; $TiO_2$; photocatalytic activity;
Citations & Related Records
연도 인용수 순위
1 J. S. Im, M. I. Kim, and Y. S. Lee, Mater. Lett., 62, 3652 (2008).   DOI   ScienceOn
2 J. U. Chen, H. C. Chen, J. N. Lin, and C. Kuo, Mater. Chem. Phys., 107, 480 (2008).   DOI   ScienceOn
3 M. Macias, A. Chacko, J. P. Ferraris, and K. J. Balkus, Micropor. Mesopor. Mat., 86, 1 (2005).   DOI   ScienceOn
4 K. C. R. Bahadur, C. K. Kim, M. S. Khil, H. Y. Kim, and I. S. Kim, Mat. Sci. Eng. C, 28, 70 (2008).   DOI   ScienceOn
5 V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Polymer, 46, 7191 (2005).   DOI   ScienceOn
6 O. S. Yordem, M. Papila, and Y. Z. Menceloglu, Mater. Design., 29, 34 (2008).   DOI   ScienceOn
7 Y. Ishii, H. Sakai, and H. Murata, Mater. Lett., 62, 3370 (2008).   DOI   ScienceOn
8 J. P. Jeun, Y. K. Jeon, Y. C. Nho, and P. H. Kang, J. Ind. Eng. Chem., 15, 430 (2009).   DOI   ScienceOn
9 P. Heikkila and A. Harlin, Eur. Polym. J., 44, 3067 (2008).   DOI   ScienceOn
10 G. C. Rutledge and S. V. Fridrikh, Adv. Drug. Deliver. Rev., 59, 1384 (2007).   DOI   ScienceOn
11 L. Ji and X. Zhang, Mater. Lett., 62, 2161 (2008).   DOI   ScienceOn
12 T. Uyar and F. Besenbacher, Polymer, 49, 5336 (2008).   DOI   ScienceOn
13 J. Qiu and J. Yu, Solid State Commun., 148, 556 (2008).   DOI   ScienceOn
14 S. J. Doh, C. Kim, S. G. Lee, S. J. Lee, and H. Kim, J. Hazard. Mater., 154, 118 (2008).   DOI   ScienceOn