• Title/Summary/Keyword: surface cracks

Search Result 1,307, Processing Time 0.025 seconds

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF

Engineering Properties of Mylonite in the Youngju Area (영주지역 압쇄암의 공학적 특성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Yang, Tae-Sun;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.35-43
    • /
    • 2011
  • The area to be studied is the place where the main line rail way will be constructed in accordance with the scheduled construction project of Yeongju dam, and is a fold and mylonite zone over several km that is formed by ductile-shearing effect. The ductile shear zone, which has been transformed by faulting for long geological time, shows a complicated geological structure. Due to the recrystallization of mineral caused by transformation in deep underground (>8km), a mylonite zone with lamellar structure has properties distinguished from other fault zones formed by transformation near earth surface <2km). To see the properties of mylonite, this study analyzed the transformation rate of sample rocks and the shape of constriction structure accompanied with transformation. While the transformation of fault zone shows a round oblate, the mylonite zone shows a prolate form. Transformation rate in fault zone was measured to be less than 1.2 compared to the state before transformation while the measured rate in mylonite zone was 2.5 at most. Setting the surface of discontinuity as the base, the unconfined compressive strength of slickenside can be categorized in sedimentary rocks, and a change of strength was observed after water soaking over certain time. Taking into account that the weathering resistance of the rock based on mineral and chemical organization is relatively higher, its engineering properties seems to result from the shattered crack structure by crushing effect. When undertaking tunnel construction in mylonite zone, there should be a special care for the expansion of shattered cracks or the fall of strength by influx of ground water.

Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode (탄소가 코팅된 일산화규소(SiO) 음극에서 전해질 첨가제로서 Lithium Bis(oxalato)borate의 영향)

  • Kim, Kun Woo;Lee, Jae Gil;Park, Hosang;Kim, Jongjung;Ryu, Ji Heon;Kim, Young-Ugk;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • As an electrolyte additive, the effects of lithium bis(oxalate)borate (LiBOB) on the electrochemical properties of a carbon-coated silicon monoxide (C-coated SiO) negative electrode are investigated. The used electrolyte is 1.3M $LiPF_6$ that is dissolved in ethylene carbonate (EC), fluoroethylene carbonate (FEC), and diethyl carbonate (DEC) (5:25:70 v/v/v) with or without 0.5 wt. % LiBOB. In the LiBOB-free electrolyte, the film resistance is not so high in the initial period of cycling that lithiation is facilitated to generate the crystalline $Li_{15}Si_4$ phase. Due to repeated volume change that is caused by such a deep charge/discharge, cracks form in the active material to cause a resistance increase, which eventually leads to capacity fading. When LiBOB is added into the electrolyte, however, more resistive surface film is generated by decomposition of LiBOB in the initial period. The crystalline $Li_{15}Si_4$ phase does not form, such that the volume change and crack formation are greatly mitigated. Consequently, the C-coated SiO electrode exhibits a better cycle performance in the later cycles. At an elevated temperature ($45^{\circ}C$), wherein the effect of film resistance is less critical, the alloy ($Li_{15}Si_4$ phase) formation is comparable for the LiBOB-free and added cell to give a similar cycle performance.

Fortification of Rice with Soy Hydrosylate Containing CHP (Cyclo Histidine-Proline) (CHP(Cyclo His-Pro) 함유 대두가수분해물을 이용한 코팅 쌀의 제조)

  • Lee, Hyun Jung;Park, Hyein;Park, Yooheon;Suh, Hyung Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.415-420
    • /
    • 2013
  • A method for coating rice with a novel substance, SHC [soybean hydrolysate with Cyclo Histidine-Proline (CHP)], was developed to produce functional rice for food production. The dip coating and spray coating method was tested to reduce the loss of functionality during the manufacturing of enriched rice. The dip coating method showed a very low absorption rate ($0.079min^{-1}$) of the functional substance compared to control ($0.150min^{-1}$), while the spray-coating method with protective coating materials [a methyl cellulose solution (l%, w/v) containing 5% (w/v) of the SHC] showed relatively adequate absorption characteristics. A light yellowish stain was observed in the rice samples processed by the spray-coating method (b value; surface1 0.69, flour 4.91) compared to raw rice (b value; surface 9.67, flour 4.86). The microscopic appearance of whole kernels and longitudinal sections revealed that cracks formed in all rice samples, regardless of the coating method. In conclusion, spray coating is a potential method for producing SHC-fortified rice with excellent physical characteristics.

In situ investigations into mining-induced overburden failures in close multiple-seam longwall mining: A case study

  • Ning, Jianguo;Wang, Jun;Tan, Yunliang;Zhang, Lisheng;Bu, Tengteng
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.657-673
    • /
    • 2017
  • Preventing water seepage and inrush into mines where close multiple-seam longwall mining is practiced is a challenging issue in the coal-rich Ordos region, China. To better protect surface (or ground) water and safely extract coal from seams beneath an aquifer, it is necessary to determine the height of the mining-induced fractured zone in the overburden strata. In situ investigations were carried out in panels 20107 (seam No. $2-2^{upper}$) and 20307 (seam No. $2-2^{middle}$) in the Gaojialiang colliery, Shendong Coalfield, China. Longwall mining-induced strata movement and overburden failure were monitored in boreholes using digital panoramic imaging and a deep hole multi-position extensometer. Our results indicate that after mining of the 20107 working face, the overburden of the failure zone can be divided into seven rock groups. The first group lies above the immediate roof (12.9 m above the top of the coal seam), and falls into the gob after the mining. The strata of the second group to the fifth group form the fractured zone (12.9-102.04 m above the coal seam) and the continuous deformation zone extends from the fifth group to the ground surface. After mining Panel 20307, a gap forms between the fifth rock group and the continuous deformation zone, widening rapidly. Then, the lower portion of the continuous deformation zone cracks and collapses into the fractured zone, extending the height of the failure zone to 87.1 m. Based on field data, a statistical formula for predicting the maximum height of overburden failure induced by close multiple seam mining is presented.

Importance of Impregnation and Polishing for Backscattered Electron Image Analysis for Cementitious Self-Healing Specimen (시멘트계 자기치유 시편에 대한 반사전자현미경 이미지 분석을 위한 함침과 연마의 중요성)

  • Kim, Dong-Hyun;Kang, Kook-Hee;Bae, Seung-Muk;Lim, Young-Jin;Lee, Seung-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Studies on self-healing have currently been diversified and the methods to evaluate the studies have become more diversified as well. Among them, the back-scattered electron (BSE) image acquired through the scanning electron microscope (SEM) is attempted as the means to evaluate the self-healing effect on cracks. In order evaluate by the BSE image, sophisticated pre-processing of specimen is critical and this injected inside the particle, pore and artificial crack of the hardener to stabilize the structure of the newly generated self-healing product and it enables to endure the stress on polishing without deformation. The impregnated specimen smoothen the surface to obtain the BSE image of high resolution that polishing is made for diamond suspension for wet polishing after dry polishing. As a result of evaluating the self-healing product on the impregnated and polished self-healing specimen, the generated product is formed from the surface of the artificial crack and the self-healing substances are confirmed as $Ca(OH)_2$ and C-S-H.

A Study on Quality Characteristics for Dutubpyun according to Grain Fineness of Glutinous Rice Powder (찹쌀가루 입자의 크기에 따른 두텁편의 품질에 관한 연구)

  • Kim Soon-Jo;Woo Kyung-Ja;Choi Won-Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.3
    • /
    • pp.323-331
    • /
    • 2006
  • The manufacture and consumption of traditional Korean rice cake is being revived due to the introduction of various desserts and confectionaries in the food industry. In order to develop this traditional food of Korea and allow various types of rice cakes to enter the market, it is essential to standardize the cooking methodology. In particular, there has been little research on Dutubpyun, a traditional food famous for its good taste. In addition, the original cooking methodology varies between cookbooks. Therefore, in order to standardize the cooking methodology for Dutubpyun referring to various cookbooks, different types Dutubpyun were made by varying the grain fineness of the glutinous rice powder to 16, 20, 30 and 40 meshes, adding up water to 10%, up sugar to 10% and up soy sauce to 5%. Subsequently, a sensory evaluation, and a test on the moisture, degree of gelatinization and hardness during storage were measured to determine the optimal grain fineness of the powder. For the sensory evaluation, where the grain sizes of the glutinous rice powder were different, the 30 and 40 mesh samples received high scores for grain fineness, moisture and chewiness. The 40 mesh samples received high scores for softness, while the overall quality was the highest in the 30 mesh samples. The moisture content during storage was $38.0{\sim}40.6%$ for the samples on the day of cooking, while it was reduced to $33.3{\sim}35%$ after 3 days of storage. Regarding the degree of gelatinization during storage, the maltose content was $2.4{\sim}2.7 mg$ for the samples on the day of cooking. After 3 days, the maltose content was $2.3{\sim}2.8 mg$ but the maltose content was higher in the 40 mesh samples than in the other samples. Regarding the change in hardness during storage, the hardness marked high in the 20 mesh samples on the day of cooking (p<0.05), while it was high in the 16 mesh samples after 3 days of storage (p<0.001). The hardness tended to increase with increasing storage time. Regarding the surface structure of the glutinous rice powder and Dutubpyun, a difference in grain fineness was clearly seen in the 15x-magnifications photograph of the rice powder structure taken by SEM. At 60x and 180x magnifications of surface of Dutubpyun, the 16 mesh samples had a uniform air gap, and a lumpy configuration. Smaller air gaps were dispersed homogeneously and similar to a net in the 20 and 30 mesh samples. The 40 mesh samples showed to a net-likes structure with cracks. Overall, for the best conditions for cooking Dutubpyun, the grain fineness of the glutinous rice power needs to be 30 mesh.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

Development of the Phased Array Ultrasonic Testing Technique for Nuclear Power Plant's Small Bore Piping Socket Weld (원전 소구경 배관 소켓용접부 위상배열 초음파검사 기술 개발)

  • Yoon, Byung-Sik;Kim, Yong-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.368-375
    • /
    • 2013
  • Failure of small bore piping welds is a recurring problem at nuclear power plants. And the socket weld cracking in small bore piping has caused unplanned plant shutdowns for repair and high economic impact on the plants. Consequently, early crack detection, including the detection of manufacturing defects, is of the utmost importance. Until now, the surface inspection methods has been applied according to ASME Section XI requirements. But the ultrasonic inspection as a volumetric method is also applying to enforce the inspection requirement. However, the conventional manual ultrasonic inspection techniques are used to detect service induced fatigue cracks. And there was uncertainty on manual ultrasonic inspection because of limited access to the welds and difficulties with contact between the ultrasonic probe and the OD(outer diameter) surface of small bore piping. In this study, phased array ultrasonic inspection technique is applied to increase inspection speed and reliability. To achieve this object, the 3.5 MHz phased array ultrasonic transducer are designed and fabricated. The manually encoded scanner was also developed to enhance contact conditions and maintain constant signal quality. Additionally inspection system is configured and inspection procedure is developed.

Preparation of Silica Films by Surface Tension Control (표면장력 제어를 이용한 실리카 박막의 제조)

  • Lee, Jae-Jun;Kim, Yeong-Ung;Jo, Un-Jo;Kim, In-Tae;Je, Hae-Jun;Park, Jae-Gwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.804-809
    • /
    • 1999
  • Silica films were prepared on Si single crystal substrates by a sol-gel process without DMF using TEOS as a starting material. Films were fabricated by spin coating technique. For films having a composition of TEOS : HCI(1:0.05mol), gelation time, the thickness of films, the formation of cracks and the microstructure of the films were investigated as a function of the molar ratio of $CH_3OH and H_2O$. With 8mol $CH_3OH$, the longest gelation time was measured to be 640hr. The thickness of the coated films was decreased with increasing content of $CH_3OH$. The films were sintered at $500^{\circ}C$ for 1hr with a heating rate of $0.6^{\circ}C$/min. The coated films showed worm-like grains and partially cracked microstructures at an amount of $CH_3OH$ 2mol and 4mol. The addition of more than 8 mole of $CH_2OH$ resulted in crack-free silica films. This suggests that crack-free films can be fabricated by controlling the surface tension energy of the sol solutions without DMF.

  • PDF