• 제목/요약/키워드: surface cracking

검색결과 579건 처리시간 0.026초

Effects of environmental parameters on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds for dry storage canister application

  • Seunghyun Kim;Gidong Kim;Chan Kyu Kim;Sang-Woo Song
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.317-327
    • /
    • 2024
  • This study investigated the chloride-induced stress corrosion cracking (CISCC) behavior expected to occur in welds of austenitic stainless steel, which are considered candidate materials for dry storage containers for spent nuclear fuel. The behavior was studied by varying temperature, relative humidity (RH), and chloride concentration. 304L-ER308L welded plates were processed into U-bend specimens and exposed to a cyclic corrosion chamber for 12 weeks. The CISCC behavior was then analyzed using electron microscopy. A previous study by the authors confirmed that CISCC occurred in ER308L at 60 ℃, 30% RH, and 0.6 M NaCl via selective corrosion of δ-ferrite. When the temperature was lowered from 60 ℃ to 50 ℃, CISCC still occurred. However, when the humidity was reduced to 20% RH, CISCC did not happen. This can be attributed to the retardation of the deliquescence of NaCl at lower humidity, which was insufficient to promote CISCC. Furthermore, increased chloride concentration to 1.0 M resulted in the absence of CISCC and widespread surface corrosion with severe pitting corrosion because of the increase in thin film thickness.

A Micro-Mechanics Based Corrosion Model for the Prediction of Service Life in Reinforced Concrete Structures

  • Song, Ha-Won;Kim, Ho-Jin;Kim, Tae-Hwan;Byun, Keun-Joo;Lee, Seung-Hoon
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.100-107
    • /
    • 2005
  • Reinforcing steel bars in reinforced concrete structures are protected from corrosion by passive film on the steel surface inside concrete with high alkalinity. However, when the passive film breaks down due to chloride ion ingressed into the RC structures, a corrosion initiates at the surface of steel bars. Then, internal pressure by volume expansion of corrosion products in reinforcing bars induces cracking and spalling of cover concrete, which reduces not only durability performance but also structural performance in RC structures. In this paper, a service life prediction of RC structures is carried out by using a micro-mechanics based corrosion model. The corrosion model is composed of a chloride penetration model to evaluate the initiation of corrosion and an electric corrosion cell model and an oxygen diffusion model to evaluate the rate and the accumulated amounts of corrosion. Then, a corrosion cracking model is combined to the models to evaluate critical amount of corrosion product for initiation cracking in cover concrete. By implementing the models into a finite element analysis program, a time and space dependent corrosion analysis and a service life prediction of RC structures due to chloride attack are simulated and the results of the analysis are compared with test results. The effect of crack width on the corrosion and the service life of the RC structures are analyzed and discussed.

고인성 섬유 시멘트 복합재료를 사용한 RC보의 전단보강효과 (Shear Performance of RC Beams Using Ductile Fiber Reinforced Cementitious Composite (DFRCC))

  • 어석홍;손기민
    • 한국산학기술학회논문지
    • /
    • 제15권9호
    • /
    • pp.5844-5853
    • /
    • 2014
  • 본 논문에서는 고인성 섬유 시멘트 복합재료(DFRCC)를 이용한 철근콘크리트(RC) 보의 전단파괴거동에 대한 실험적 연구결과를 제시하였다. 이를 위해 $150{\times}300{\times}1,000mm$ 크기의 보를 총 10개 제작하여 변위제어에 의한 4점휨파괴실험을 실시하였다. 주요 실험변수로는 DFRCC에 의한 보강의 유무, 보강시 그라인딩을 통한 사전 표면처리 그리고 사전 균열발생 유무를 설정하였다. 실험으로부터 재하시작 후 파괴시까지 보의 하중-처짐곡선, 전단균열 및 휨균열 발생하중 그리고 파괴시 전단강도를 측정하였다. 실험결과, DFRCC에 의한 보강시 적절한 두께와 사전 표면처리를 적절히 시행할 경우 기존 RC보의 전단강도를 약 99% 이상 효과적으로 복원할 수 있는 것으로 나타났으며, 보다 신뢰성있는 연구를 위하여 실제 노후화된 구조물에서 채취한 부재에 대한 추가적인 실험과 이론적 연구가 필요한 것으로 판단된다.

풀림방지용 너트 구조 최적화 (Structure Optimization of a Nut for Prevention of Bolt Loosening)

  • 정광렬;박태원;정성필;정원선
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.965-970
    • /
    • 2010
  • 볼트와 너트는 기기와 구조물등에 기계적인 요소들을 결합하는데 널리 사용되어지고 있다. 너트의 주된역활은 보트의 축방향의 힘을 유지시키는 데 있다. 본 논문은 스프링을 사용한 새로운 형태의 로크너트에 대한 것이다. 너트에서는 스프링을 잡아주기 위해서 너트의 상단부분을 좁게 만드는 코킹과 정이 이루어진다. 하지만 이 과정에서는 크랙이 발생한다. 본 연구에서는 유한요소분석 프로그램인 MSC/Marc를 사용하여 초기 모델의 변형률을 측정하였다. 크랙의 발생은 실제 1020 steel의 최대 변형률과 모델의 최대값을 비교함으로써 결정되어 졌다. 그리고 로크너트는 반응표면분석법을 사용하여 최적화 되어졌다. 로크너트의 프로토타입은 최적화된 결과에 따라 생산되어 졌으며 그에 따라 크랙은 발생하지 않았다.

증기발생기 전열관 2차측 응력부식균열의 실험실적 모사 방법 (Laboratorial technique for fabrication of outer diameter stress corrosion cracking on steam generator tubing)

  • 이재민;김성우;황성식;김홍표;김홍덕
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.112-119
    • /
    • 2014
  • In this work, it is aimed to develop the fabrication method of axial stress corrosion cracking (SCC) defects having various sizes, on the outer diameter surface of the steam generator (SG) tubings. To control the length of the artificial SCC defect, the specific area of the SG tubing samples was exposed to an acidic solution after a sensitization heat treatment. During the exposure to an acidic solution, a direct current potential drop (DCPD) method was adopted to monitor the crack depth. The size of the SCC defect was first evaluated by an eddy current test (ECT), and then confirmed by a destructive examination. From the comparison, it was found that the actual crack length was well controlled to be similar to the length of the surface exposed to an acidic solution (5, 10, 20 or 30 mm in this work) with small standard deviation. From in-situ monitoring of the crack depth using the DCPD method, it was possible to distinguish a non-through wall crack from a through wall crack, even though the depth of the non-through wall crack was not able to be precisely controlled. The fabrication method established in this work was useful to simulate the SCC defect having similar size and ECT signals as compared to the field cracks in the SG tubings of the operating Korean PWRs.

슬러리형 셀룰로오즈 파이버를 혼입한 시멘트 모르타르의 강도 특성 (Strength Properties of Cement Mortar with Slurry-Typed Cellulous Fiber)

  • 류화성;신상헌;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제7권3호
    • /
    • pp.210-215
    • /
    • 2019
  • 비표면적이 큰 콘크리트 구조체의 균열의 경우 재료적인 거동(수화열 및 건조수축)으로 균열이 발생하기 쉽다. 최근 들어 섬유를 혼입함으로서 콘크리트의 강도 및 균열 저항성 개선에 대한 많은 연구가 진행 중인데 주로 압축강도 개선보다는 인장강도 개선을 통하여 재료적 균열에 대한 저항을 높이는 연구에 집중되고 있다. 본 연구에서는 셀룰로오즈 섬유를 슬러리형으로 제조하여 이를 혼입한 시멘트 모르타르의 작업성, 압축강도 및 휨강도를 평가하였으며, SEM 측정을 통하여 섬유재의 뽑힘특성을 평가하였다. CF 혼입률을 $0.5kg/m^3{\sim}1.0kg/m^3$으로 혼입할 경우, 휨강도를 크게 향상 시킬 수 있으며, 일반 플라스틱 섬유재와 달리 뽑힘 시 충분한 조도를 가지고 있음이 관측되었다.

STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구 (A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds)

  • 박광용;심덕남;하종문;이상동;조성우
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.102-108
    • /
    • 2023
  • A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

인천국제공항 여객터미널 전면 고가 교량 공사 시공방법 및 수화열 대책 (Construction Method and Control System of the Heat of Hydration for Inchon International Airport Elevated Road Way)

  • 임채만;박명웅;조용기;조선규;김은겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.869-881
    • /
    • 1999
  • Inchon International Airport Elevated Road Way is located between the Passenger Terminal Building and Transportaion Center which are Inchon International Airport core construction projects. The deck of the bridge is consists of 5-span or 6-span continuous pre-stressed concrete slab. Steel form has been used to enhance the quality of texture on concrete slab. Steel form has been used to enhance the quality of texture on concrete surface, lower surface of deck slab with the two way arch has been manufactured by highly professional manner in order to get an beautiful exterior architectural looks. The prestressed concrete deck slab is mass concrete structures with a high-specified concrete strength and a varying section in the range of 0.95-2.8m thickness. Therefore high risks of thermal cracking occurrence by heat of hydration highly are expected. To resolve such problem, we adopted type 1 cement and pipe cooking method at construction site through mass concrete specimen test and 3-dimensional analysis. For Pipe cooling we used 25mm diameter stainless pipes with wrinkles. Cooling pipe with spacing 50-60cm has been installed. And continuous pipe cooling with cooling water of 15$^{\circ}C$ was conducted for 2days. In present 8 span of all 29 spans construction has been completed. No thermal cracking heat hydration has been observed yet.

  • PDF

Consideration of the Frictional Force on the Crack Surface and Its Implications for Durability of Tires

  • Park, K.S.;Kim, T.W.;Jeong, H.Y.;Kim, S.N.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2159-2167
    • /
    • 2006
  • In order to find out a physical quantity which controls the fatigue life of a structure and to predict the fatigue life of tires, a finite element simulation methodology to use the cracking energy density (CED) and the virtual crack closure technique (VCCT) was proposed and applied to three different tires of a similar size. CED was calculated to predict the location of a crack initiation, and VCCT was used to obtain the strain energy release rate (SERR) at the tip of an initiated crack. Finite element simulations showed that SERR oscillated in the circumferential direction with its minimum occurring just before the contact zone and its maximum occurring just after the center of the contact zone, and SERR was affected significantly by the frictional force acting on the crack surface. In addition, a durability test was conducted to measure the fatigue life of the three tires. The comparison of SERR values with the test data revealed that the fatigue life increased as the amplitude of SERR decreased or as the R-ratio of SERR increased.

레이저 피닝 처리 및 적용 기술 (Laser Peening Process and Its Application Technique)

  • 김종도;무네하루 쿠쯔나;유지 사노
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.1-6
    • /
    • 2015
  • Advances in laser technology have yielded a multitude of innovative processes and applications in various industries. Laser peening is a typical example invented in the mid-1990s as a surface technology, which converted residual stress from tension to compression by just irradiating successive laser pulses to metallic materials under aqueous environment without any surface preparation. The effects of laser peening have been experimentally studied on residual stress, stress corrosion cracking(SCC) susceptibility and fatigue properties with water-penetrable frequency-doubled Nd:YAG laser. In addition, laser peening has been widely used in aviation and aerospace industries, automobile manufacturing and nuclear plant. One of the most important causes to improve the above-mentioned properties is the deeper compressive residual stress induced by laser peening. Taking advantage of the process without reacting force against laser irradiation, a remote operating system was developed to apply laser peening to nuclear power reactors as a preventive maintenance measure against SCC.