• Title/Summary/Keyword: surface crack

Search Result 2,005, Processing Time 0.034 seconds

Clinical remarks about esthetics in the case of full zirconia restoration utilizing Zirkonzahn Prettau® block (지르코잔 프레타우 블럭을 이용한 Full Zirconia 수복 시 심미에 관한 임상적 소견)

  • Park, Jong-Chan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.30-46
    • /
    • 2013
  • Porcelain fused to metal crown has been used mostly over the last 50 years for restorations in dentistry. However, the patients' awareness of aesthetic aspect, biocompatibility and the problems such as an allergy to metals led to the growing interest in the 'metal free restoration'. In particular, the price of the precious metals that have been mainly used to date has risen drastically, which made them impossible to play their role as oral restorative materials anymore, and in addition, the PFM restoration has intrinsic problems of chipping and fracture. Therefore, the CAD/CAM has been drawing more attention than ever due to the popular needs for the material that is more aesthetic and stronger for restoration of the molar implant. Considerations in carrying out the full zirconia restoration are as follows: 1) strength, 2) combination work, 3) light penetrability, 4) treatment of cracks, 5) the color reproducibility of the block, 6) the abrasivity of antagonistic tooth, 7) low temperature degradation. In this presentation, the color reproducibility of the block will be discussed. One of the biggest reasons for avoiding the full zirconia restoration is that it is difficult to reproduce the natural color compared to the conventional PFM restoration. Thus, many clinicians show reluctance due to the exposure of the ugly block when the coloring on the surface is removed after occlusal adjustment. From the experience of using blocks by Zirkonzahn for more than 4 years, it is considered that these problems can be addressed to some degrees. Accordingly, how to make restorations that are well in harmony with surrounding prosthesis or natural teeth will be discussed.

Interfacial Pullout Characteristics of Recycled PET Fiber With Hydrophilic Chemical Treatments in Cement Based Composites (화학적 친수성 처리율에 따른 재생 PET 섬유와 시멘트 복합재료와의 계면 인발 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Yoon-Jeong;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.333-339
    • /
    • 2007
  • The purpose of this study was to enhance bond performance between recycled PET (polyethylene telephthalat) fiber and cement composites through hydrophilic treatment using maleic anhydride grafted polypropylene(mPP). The mPP with various concentration of 0%, 5%, 10%, 15% and 20% to determine effect on bond behavior of recycled PET fiber were applied as experimental variables. Dog bone shaped specimens according to JCI SF-8 was applied to evaluate the bond strength and pullout energy. The results showed increased bond strength and pullout energy as concentration of mPP. Concentration of 15% mPP showed the most effective results while 20% showed reduced performance results. Because 15% mPP ensures perfect coating while 20% makes thick coating area that resulted in crack propagation and consequent separation of PET fiber and coated area during pullout load occurred. Enhancement mechanism of bond performance of recycled PET fiber and cement composites with each concentration of mPP could be conformed through investigation of microstructure of fiber surface.

Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites (탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향)

  • Han, Woong;Choi, Woong-Ki;An, Kay-Hyeok;Kim, Hong-Gun;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.363-369
    • /
    • 2013
  • In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

Manufacture of Calligraphy-carving Artworks Using Carbonized Board (탄화보드를 이용한 서각작품 제작)

  • Park, Sang-Bum;Chong, Song-Ho;Byeon, Hee-Seop;Ryu, Hyun-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • This study was focused to make a wooden plate that is engraved with writings or pictures on the medium density fiberboard (MDF), and then to produce a calligraphy-carving artwork by carbonization of the carved MDF. The external appearances and anatomical changes were investigated on the carbonized MDF and aesthetic characteristics was also discussed. No split and no twist were found after the carbonization (at $850^{\circ}C$) of the calligraphy-encarved MDF, shrinkages of the MDF were observed with portions of 21.8% in length, 18.8% in width and 43.5% in thickness, and 69.2% of weight loss with density decrease of 14.8% were observed as well. From the observation of the carbonized board by a scanning electron microscope, specific phenomena were found: the adhesives, surrounding the fiber's surface and pits, were carbonized, the woody fibers were changed smoothly, the pits were opened, the fiber' size was uniformized, and the organization was compacted. By the combination of handmade calligraphy-woodcarving and crack-free carbonizing methods, it was able to find a new method for manufacture carbonized calligraphy-woodcarving artwork. It is concluded that the calligraphy-woodcarving artwork using carbonized board can be a new access for the eco-friendly art that has the advantage of the functionality of charcoal and the aesthetic of calligraphy-woodcarving simultaneously.

Experimental Study on Coefficient of Air Convection (외기대류계수에 관한 실험적 연구)

  • Jeon, Sang-Eun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2003
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. From experimental results, the coefficient of air convection was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent coefficient of air convection including effects of velocity of wind and types of form was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the coefficient of air convection by this model was well agreed with those by experimental results.

Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask (Pt 금속마스크를 이용하여 제작한 나노패턴 Si(111) 기판위에 성장한 GaN 박막 특성)

  • Kim, Jong-Ock;Lim, Kee-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.67-71
    • /
    • 2014
  • An attempt to grow high quality GaN on silicon substrate using metal organic chemical vapor deposition (MOCVD), herein GaN epitaxial layers were grown on various Si(111) substrates. Thin Platinum layer was deposited on Si(111) substrate using sputtering, followed by thermal annealing to form Pt nano-clusters which act as masking layer during dry-etched with inductively coupled plasma-reactive ion etching to generate nano-patterned Si(111) substrate. In addition, micro-patterned Si(111) substrate with circle shape was also fabricated by using conventional photo-lithography technique. GaN epitaxial layers were subsequently grown on micro-, nano-patterned and conventional Si (111) substrate under identical growth conditions for comparison. The GaN layer grown on nano-patterned Si (111) substrate shows the lowest crack density with mirror-like surface morphology. The FWHM values of XRD rocking curve measured from symmetry (002) and asymmetry (102) planes are 576 arcsec and 828 arcsec, respectively. To corroborate an enhancement of the growth quality, the FWHM value achieved from the photoluminescence spectra also shows the lowest value (46.5 meV) as compare to other grown samples.

Structural characterization of $Al_2O_3$ layer coated with plasma sprayed method (플라즈마 스프레이 방법으로 코팅 된 $Al_2O_3$막의 구조적 특성)

  • Kim, Jwa-Yeon;Yu, Jae-Keun;Sul, Yong-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.116-120
    • /
    • 2006
  • We have investigated plasma spray coated $Al_2O_3$ layers on Al-60 series substrates for development of wafer electrostatic chuck in semiconductor dry etching system. Samples were prepared without/with cooling bar on backside of samples, at various distances, and with different powder feed rates. There were many cracks and pores in the $Al_2O_3$ layers coated on Al-60 series substrates without cooling bar on the backside of samples. But the cracks and pores were almost disappeared in the $Al_2O_3$ layers on Al-60 series substrates coated with cooling bar on the back side of samples, 15 g/min. powder feed rate and various 60, 70, 80 mm working distances. Then the surface morphology was not changed with various working distances of 60, 70, 80 mm. When the powder feed rate was changed from 15 g/min to 20 g/min, the crack did not appear, but few pores appeared. Also the $Al_2O_3$ layer was coated with many small splats compared with $Al_2O_3$ layer coated with 15 g/min powder feed rate. The deposited rate of $Al_2O_3$ layer was higher when the process was done without cooling bar on the back side of sample than that with cooling bar on the back side of sample.

Thermal property of geopolymer on fly ash-blast furnace slag system with the addition of alumina aggregate (알루미나 골재 첨가에 따른 플라이애쉬-고로슬래그계 지오폴리머의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • In this study, the higher temperature thermal property of the fly ash-blast furnace slag system Geopolymer including alumina aggregate was investigated whether that Geopolymer will be or not useful as thermal-resistant construction materials. Under every mixing conditions, the crack on the surface of hardened body was not observed up to $800^{\circ}C$ and it corresponded with fact that level of changes was not significant before and after heating process. Residual compressive strength is most high when mixing Blast-Furnace Slag ratio is 60 wt% until temperature reaches $800^{\circ}C$. The major hydrates of hardened body of Geopolymer; amorphous halo pattern between $20{\sim}35^{\circ}$ (2theta) and mullite ($3Al_2O_3{\cdot}2SiO_2$) and quartz ($SiO_2$) was found during the experiment. Amorphous halo pattern was a aluminosilicate gel generated by geopolymeric polycondensation and it was found that the halo pattern of aluminosilicate gel was preserved up to $800^{\circ}C$. The patterns of aluminosilicate gel disappeared from $1,000^{\circ}C$ and crystal phases like gehlenite, calcium silicate, calcium aluminum oxide, microcline was observed with the increase of exposure temperature.

Hybrid Powder-Extrusion Process Involving the Control of Temperature Dwelling Time for Fabricating Spur Gears with Required Properties (온도 유지시간 제어를 적용한 하이브리드 분말 압출 공정을 통한 요구 특성의 스퍼기어 제조)

  • Lee, Kyung-Hun;Hwang, Dae-Won;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.847-853
    • /
    • 2011
  • In this study, a hybrid powder-extrusion process involving the control of temperature dwelling time for improving the formability of Zn-22Al powder was developed and the effect of dwelling time on the mechanical properties of a spur gear with a pitch circle having a diameter of 1.8 mm was investigated. General extrusion experiments were carried out at different temperatures such as 290, 300, and $310^{\circ}C$. Spur gears with good qualities and without any surface defects were obtained in the case of extrusion temperature of $310^{\circ}C$ and ball-milling duration of 32 h. The Vickers hardness distribution was non-uniform, and after the sintering process, an internal crack was generated because of the different deformation energy between gear central part and teeth. To overcome the abovementioned problems, research on controlling the dwelling time of the extrusion temperature in the powder-extrusion process was carried out. Good-quality spur gears were obtained when the dwelling time was 15 min.