• Title/Summary/Keyword: surface cover change

Search Result 184, Processing Time 0.031 seconds

Standardization of Metadata for Urban Meteorological Observations (도시기상 관측을 위한 메타데이터의 표준화)

  • Song, Yunyoung;Chae, Jung-Hoon;Choi, Min-Hyeok;Park, Moon-Soo;Choi, Young Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.600-618
    • /
    • 2014
  • The metadata for urban meteorological observation is standardized through comparison with those established at the World Meteorological Organization and the Korea Meteorological Administration to understand the surrounding environment around the sites exactly and maintain the networks and sites efficiently. It categorizes into metadata for an observational network and observational sites. The latter is again divided into the metadata for station general information, local scale information, micro scale information, and visual information in order to explain urban environment in detail. The metadata also contains the static information such as urban structure, surface cover, metabolism, communication, building density, roof type, moisture/heat sources, and traffic as well as the update information on the environment change, maintenance, replacement, and/or calibration of sensors. The standardized metadata for urban meteorological observation is applied to the Weather Information Service Engine (WISE) integrated meteorological sensor network and sites installed at Incheon area. It will be very useful for site manager as well as researchers in fields of urban meteorology, radiation, surface energy balance, anthropogenic heat, turbulence, heat storage, and boundary layer processes.

Baseline Refinement for Topographic Phase Estimation using External DEM

  • Lee, Chang-Won;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.460-464
    • /
    • 2002
  • Multitemporal interferometric SAR has became an useful geodetic tool for monitoring Earth's surface deformation, generation of precise DEM, and land cover classification even though there still exist certain constraints such as temporal and spatial decorrelation effects, atmospheric artifacts and inaccurate orbit information. The Korea where nearly all areas are heavily vegetated, JERS-1 SAR has advantages in monitoring surface deformations and environmental changes in that it uses 4-times longer wavelength than ERS-l/2 or RADARSAT SAR system. For generating differential SAR interferogram and differential coherence image fer deformation mapping and temporal change detection, respectively, topographic phase removal process is required utilizing a reference inteferogram or external DEM simulation. Because the SAR antenna baseline parameter for JERS-1 is less accurate than those of ERS-l/2, one can not estimate topographic phases from an external DEM and the residual phase appears in differential interferogram. In this paper, we examined topographic phase retrieval method utilizing an external DEM. The baseline refinement is carried out by minimizing the differences between the measured unwrapped phase and the reference points of the DEM.

  • PDF

Impacts of Impevious Cove Change on Pollutant Loads from the Daejeon-Stream Watershed Using AnnAGNPS (논문 - AnnAGNPS를 이용한 대전천 유역의 불투수면 변화에 따른 배출부하량 평가)

  • Chang, Seung-Woo;Kang, Moon-Seong;Song, In-Hong;Chung, Se-Woong
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • Increased impervious surfaces alter stream hydrology resulting in lower flows during droughts and higher peak flows during floods. Not only urban area but also rural area has been expanded impervious surfaces because of increasing of greenhouses. The main objective of this study was to evaluate the performance of the AnnAGNPS (Annualized Non-Point Source Pollution Model) on the surface runoff characteristics of the Daejeon-Stream watershed, and to predict the hydrological effects due to increasing of impervious surfaces. The model parameters were obtained from the geographical information system (GIS) databases, and additional parameters calibrated with the observed data. The model was calibrated by using 2004 of the runoff data and validated by using 2002 data obtained from WAMIS (Water Management Information System) to compare the simulated results for the study watershed. R2 values and efficiency index (EI) between observed and simulated runoff were 0.78 and 0.80, respectively at the calibration period. In this study, expanding of impervious surfaces such as greenhouses caused increasing of surface runoff, but caused decreasing of total nitrogen and total phosphorus loads.

  • PDF

An approximate analytical solution for the initial transient process of close-contact melting on an isothermal surface (등온가열에 의한 접촉융해의 초기 과도과정에 대한 근사적 해석해)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1710-1719
    • /
    • 1997
  • An approximate analytical solution for the initial transient process of close-contact melting occurring between a phase change material kept at its melting temperature and an isothermally heated flat surface is derived. The model is so developed that it can cover both rectangular and circular cross-sectional solid blocks. Normalization of simplified model equations in reference to the steady solution enables the solution to be expressed in a generalized form depending on the liquid-to-solid density ratio only. A selected result shows an excellent agreement with the previously reported numerical data, which justifies the present approach. The solution appears to be capable of describing all the fundamental characteristics of the transient process. In particular, dependence of the solid descending velocity oft the density ratio at the early stage of melting is successfully resolved. The effects of other parameters except the density ratio on the transient behaviors are efficiently represented via the steady solution implied in the normalized result. A simple approximate method for estimating the effect of convection on heat transfer across the liquid film is also proposed.

A simplified framework for estimation of deformation pattern in deep excavations

  • Abdollah Tabaroei;Reza Jamshidi Chenari
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • To stabilize the excavations in urban area, soil anchorage is among the very common methods in geotechnical engineering. A more efficient deformation analysis can potentially lead to cost-effective and safer designs. To this end, a total of 116 three-dimensional (3D) finite element (FE) models of a deep excavation supported by tie-back wall system were analyzed in this study. An initial validation was conducted through examination of the results against the Texas A&M excavation cases. After the validation step, an extensive parametric study was carried out to cover significant design parameters of tie-back wall system in deep excavations. The numerical results indicated that the maximum horizontal displacement values of the wall (δhm) and maximum surface settlement (δvm) increase by an increase in the value of ground anchors inclination relative to the horizon. Additionally, a change in the wall embedment depth was found to be contributing more to δvm than to δhm. Based on the 3D FE analysis results, two simple equations are proposed to estimate excavation deformations for different scenarios in which the geometric configuration parameters are taken into account. The model proposed in this study can help the engineers to have a better understanding of the behavior of such systems.

Atmospheric Characteristics of Fog Incidents at the Nakdong River : Case Study in Gangjeong-Goryeong Weir (낙동강 유역 안개 발생시 기상 특성: 강정고령보 사례를 중심으로)

  • Park, Jun Sang;Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Jang, Jun Yeong;Kang, Misun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.657-670
    • /
    • 2015
  • Visibility and Automatic Weather System(AWS) data near Nakdong river were analyzed to characterize fog formation during 2012-2013. The temperature was lower than its nearby city - Daegu, whereas the humidity was higher than the city. 157 fog events were observed in total during the 2 year period. About 65% of the events occurred in fall (September, October, and November) followed by winter, summer, and spring. 94 early morning fog events of longer than 30 minutes occurred when south westerly wind speed was lower than 2 m/s. During these events, the water temperature was highest followed by soil surface and air temperatures due to the advection of cold and humid air from nearby hill. The observed fog events were categorized using a fog-type classification algorithm, which used surface cooling, wind speed threshold, rate of change of air temperature and dew point temperature. As a result, frontal fog observed 6 times, radiation 4, advection 13, and evaporation 66. The evaporation fog in the study area lasted longer than other reports. It is due to the interactions of cold air drainage flow and warm surface in addition to the evaporation from the water surface. In particular, more than 60% of the evaporation fog events were accompanied with cold air flows over the wet and warm surface. Therefore, it is needed for the identification of the inland fog mechanism to evaluate the impacts of nearby topography and land cover as well as water body.

A Comparative Analysis of Annual Surface Soil Erosion Before and After the River Improvement Project in the Geumgang Basin Using the RUSLE (RUSLE을 활용한 금강 수변지역의 하천정비사업 전·후의 연간 표토침식량 변화 비교분석)

  • Kim, Jeong-Cheol;Choi, Jong-Yun;Lee, Sunmin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1351-1361
    • /
    • 2019
  • In this study, the annual surface soil erosion amount of before (2007 year) and after (2015 year) the river improvement projects were calculated using RUSLE (Revised Universal Soil Loss Equation) in the Geumgang basin (Daecheong-Dam to Geumgang Estuary-Bank). After the results were classified into five classes, the results were compared and analyzed with the results of the change in the land cover. In order to generate each factor of RUSLE, various spatial information data, such as land cover maps for 2007 and 2015 years, national basic spatial information, soil map, and average annual precipitation data were utilized. The results of the analysis are as follows: 1) annual surface soil erosion in the study area increased the area of class 1 in 2015 years compared to 2007, 2) the area of class 2, 3 and 5 decreased, 3) the area of class 4 increased. It is believed that the average annual amount of surface soil erosion decreased in most areas due to the reduction of annual average precipitation, the formation of ecological parks, the expansion of artificial facilities, and the reduction of illegal farmland.

Evaluation of the Utility of SSG Algorithm for Image Restoration of Landsat-8 (Landsat 8호 영상 복원을 위한 SSG 기법 활용성 평가)

  • Lee, Mi Hee;Lee, Dalgeun;Yu, Jung Hum;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1231-1244
    • /
    • 2020
  • Landsat satellites are representative optical satellites that have observed the Earth's surface for a long-term, and are suitable for long-term changes such as disaster preparedness/recovery monitoring, land use change, change detection, and time series monitoring. In this paper, clouds and cloud shadows were detected using QA bands to detect and remove clouds simply and efficiently. Then, the missing area of the experimantal image is restorated through the SSG algorithm, which does not directly refer to the pixel value of the reference image, but performs restoration to the pixel value in the Experimental image. Through this study, we presented the possibility of utilizing the modified SSG algorithm by quantitatively and qualitatively evaluating information on variousl and cover conditions in the thermal wavelength band as well as the visible wavelength band observing the surface.

Analysis of BRD Components Over Major Land Types of Korea

  • Kim, Sang-Il;Han, Kyung-Soo;Park, Soo-Jea;Pi, Kyoung-Jin;Kim, In-Hwan;Lee, Min-Ji;Lee, Sun-Gu;Chun, Young-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.653-664
    • /
    • 2010
  • The land surface reflectance is a key parameter influencing the climate near the surface. Therefore, it must be determined with sufficient accuracy for climate change research. In particular, the characteristics of the bidirectional reflectance distribution function (BRDF) when using earth observation system (EOS) are important for normalizing the reflected solar radiation from the earth's surface. Also, wide swath satellites like SPOT/VGT (VEGETATION) permit sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning. This gives a difficulty to BRDF model based reflectance normalization of high resolution satellites. The principal objective of the study is to add BRDF modeling of high resolution satellites and to supply insufficient angular sampling through identifying BRDF components from SPOT/VGT. This study is performed as the preliminary data for apply to high-resolution satellite. The study provides surface parameters by eliminating BRD effect when calculated biophysical index of plant by BRDF model. We use semi-empirical BRDF model to identify the BRD components. This study uses SPOT/VGT satellite data acquired in the S1 (daily) data. Modeled reflectance values show a good agreement with measured reflectance values from SPOT satellite. This study analyzes BRD effect components by using the NDVI(Normalized Difference Vegetation Index) and the angle components such as solar zenith angle, satellite zenith angle and relative azimuth angle. Geometric scattering kernel mainly depends on the azimuth angle variation and volumetric scattering kernel is less dependent on the azimuth angle variation. Also, forest from land cover shows the wider distribution of value than cropland, overall tendency is similar. Forest shows relatively larger value of geometric term ($K_1{\cdot}f_1$) than cropland, When performed comparison between cropland and forest. Angle and NDVI value are closely related.

The Related Research with the Land Cover State and Temperature in the Outer Space of the Super-High-Rise Building (초고층 건축물 외부공간의 토지 피복 상태와 온도와의 관계 연구)

  • Han, Bong-Ho;Kim, Hong-Soon;Jung, Tae-Jun;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.751-762
    • /
    • 2010
  • In order to understand the influence that the plant cover condition of the high-rise building outer space causes to the temperature change, we selected 12 high-rise building constructed in Seoul City. The land cover type of the outside was classified into six type(outer road, paved surface, shrub/grassland, single-layer tree planting-site, multi-layer planting-site, and waterscape facilities) and the temperature was measured at the representative point for each type in order to analyze the land cover temperature differential for each type of the high-rise building outer space. The study area showing the temperature tendency to be similar based upon one way analysis of variance after selecting the central part of the outer road for a control and measuring a temperature in order to consider the neighboring environmental difference of the dozen building was classified into 4 groups. As to the one-way layout result of variance analysis with the land cover type of the classified group and outer space temperature, the single-layer tree planting-site, waterscape facilities, and multi-layer planting-site belonged mainly to the low temperature section. The shrub/grassland, paved surface, and outer road belonged to the high temperature region. The temperature difference between low temperature region and high temperature region is about $1.06{\sim}6.17^{\circ}C$. However, the temperature in the Outer Space of the Super-High-Rise Building was variously appeared by the influence such as the cramped of the created planting-site and waterscape facilities area, the increase of amount of solar radiation and the reduction of reflection amount of light due to building etc.. Thus, the composition all produced the area of the green quantity required for each space and water space in advance. It was determined that there were the minimum area displaying an effect and the necessity to it secures the green quantity.