• Title/Summary/Keyword: surface comparison

Search Result 3,796, Processing Time 0.029 seconds

Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams

  • Ebrahimi, Farzad;Daman, Mohsen
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.35-47
    • /
    • 2017
  • This paper deals with free vibration analysis of nanosize rings and arches with consideration of surface effects. The Gurtin-Murdach model is employed for incorporating the surface effect parameters including surface density, while the small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. An analytical Navier solution is presented to solve the governing equations of motions. Comparison between results of the present work and those available in the literature shows the accuracy of this method. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects. Moreover, it is shown that by increasing the nonlocal parameter, the influence of surface density reduce to zero, and the natural frequency reaches its classical value. Numerical results are presented to serve as benchmarks for future analyses of nanosize rings and arches.

Effects of Added Silicone Oils on the Surface Hydrophobicity of Silicone Rubber (실리콘 고무의 소수성에 미치는 첨가된 실리콘 오일의 영향)

  • Han Dong-Hee;Cho Han-Goo;Kang Dong-Pll;Min Kyung-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • This paper reports on the effects of silicone oils, used as processing agents, on the recovery of hydrophobicity of silicone rubber. The recovery of hydrophobicity was evaluated by the measuring the contact angle, the surface electrical resistance and SEM. Here, we formed artificial contamination on the surface of samples, which scratched by sand papers and alumina powders. There was small recovery of hydrophobicity on the surface of SIR-A that silicone oil was not added. In both oil-added samples, SIR-B and SIR-C, recovery of hydrophobicity was achieved greatly. The surface of SIR-C showed that a lot of silicone oil was observed due to migration of oil, relatively in comparison with SIR-B. The tendency of recovery of hydrophobicity expressed by contact angle was in a good agreement with electrical property as determined by surface resistivity.

A Study on the Impact and Solidification of the Liquid Metal Droplet in the Thermal Spray Deposition onto the Substrate with Surface Defects (표면 결함이 있는 모재에 대한 용사 공정에서 용응 금속 액적의 충돌현상과 응고 과정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1597-1604
    • /
    • 2002
  • In this study, numerical investigation has been performed on the impingement, spreading and solidification of a coating material droplet impacting onto a solid substrate in the thermal spray process. The numerical model is validated through the comparison of the present numerical result with experimental data fer the flat substrate without surface defects. An analysis of deposition formation on the non-polished substrate with surface defects is also performed. The parametric study is conducted with various surface defect sizes and shapes to examine the effect of surface defects on the impact and solidification of the liquid droplet on the substrate.

Influence of tilt and surface roughness on the outflow wind field of an impinging jet

  • Mason, M.S.;Wood, G.S.;Fletcher, D.F.
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.179-204
    • /
    • 2009
  • A physical and numerical steady flow impinging jet has been used to simulate the bulk characteristics of a downburst-like wind field. The influence of downdraft tilt and surface roughness on the ensuing wall jet flow has been investigated. It was found that a simulated downdraft impinging the surface at a non-normal angle has the potential for causing larger structural loads than the normal impingement case. It was also found that for the current impinging jet simulations, surface roughness played a minor role in determining the storm maximum wind structure, but this influence increased as the wall jet diverged. However, through comparison with previous research it was found that the influence of surface roughness is Reynolds number dependent and therefore may differ from that reported herein for full-scale downburst cases. Using the current experimental results an empirical model has been developed for laboratory-scale impinging jet velocity structure that includes the influence of both jet tilt and surface roughness.

Comparison of Surface Characteristics and Adsorption Rate of Benzene Vapor According to Modifications of Activated Carbon (개질에 따른 활성탄의 표면특성과 Benzene 증기의 흡착속도 비교)

  • Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.919-924
    • /
    • 2008
  • The surface properties and adsorption rates of activated carbon modified with acid and base were compared. The distribution ratio of C and C-H on the surface of activated carbon were decreased by modification with acid and base, but the distribution ratio of C-O, C=O, and O=C-O were increased. Base modification damaged the surface of activated carbon more than acid modification, it caused the effect of 6 percent increments of surface area. Adsorption rate model was more suitable to second order equation than first order equation. Adsorption rate was controlled by adsorption in pore better than in surface.

Comparison of the nutrient concentration between surface water and ground water in a rural watershed (농촌 소유역에서의 지표수와 지하수의 영양물질 농도 비교)

  • Song, Chul-Min;Kim, Jin-Soo;Oh, Kwang-Young;Gwon, Seong-Il;Jiang, Jie
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.157-161
    • /
    • 2007
  • Nutrients were investigated for surface water, bottom sediment and ground water in a rural watershed from January 2006 to March 2007. The concentrations of TN and $NO_3-N$ in ground water were higher than those in surface water due to fertilization on cabbage upland neighboring a river during March to August, but lower than those in surface water during September to February. However, the concentrations TP and $PO_4-P$ in ground water were lower than those in surface water. The concentrations of TP and $PO_4-P$ in surface water was lower than those in bottom sediment. The TP concentration in the bottom greatly decreased during rainy season. due to flush sediment of bottom, and then gradually increased.

  • PDF

A STUDY ON THE VOID FORMATION AND DETAIL REPRODUCTION ACCORDING TO THE VARIOUS IMPRESSION MATERIALS AND MIXING METHODS (수종 인상재의 혼합방법에 따른 기포형성과 표면 재현력에 관한 연구)

  • Ryu, Hyeong-Seon;Lim, Heon-Song;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.2
    • /
    • pp.140-155
    • /
    • 2002
  • Void-free impression taking is important for the fabrication of accurate dental restorations. One of the essential properties of an impression material used for indirect fabrication of precision castings is the reproduction of the fine detail. The objective in this study was to determine the influence of mixing methods on the number of voids and surface detail reproduction. The number of voids and surface detail reproduction were evaluated with the steteomicroscope $SZ-PT^{(R)}$ and photographed. The results were as follows ; 1. In comparison of the void formation according to mixing methods of all impression materials, mechanical mixing was better than hand mixing and there was significant difference(p<0.05) 2. In comparison of the void formation according to hand mixing of alginate impression materials($TOKUSO\;A-1{\alpha}^{(R)},\;CAVEX\;IMPRESSIONAL^{(R)},\;AROMA \;FINE\;DF\;III^{(R)}$), there was no significant difference among alginate groups. But the number of void was increased in the order of $Panasil^{(R)}\;contact,\;TOKUSO\;A-1{\alpha}^{(R)},\;Permlastic^{(R)}$ light bodied and there was significant difference (p<0.05). 3. In comparison of the void formation according to mechanical mixing of alginate impression materials($TOKUSO\;A-1{\alpha}^{(R)},\;CAVEX\;IMPRESSIONAL^{(R)},\;AROMA FINE\;DF\;III^{(R)}$), there was no significant different among alginate groups. But the number of void was decreased in order of $TOKUSO\;A-1{\alpha}^{(R)},\;Permlastic^{(R)}light\;bodied,\;Panasil^{(R)}$ contact and there was significant difference (p<0.05). 4. In comparison of the surface detail reproduction according to mixing methods of 3 types of impression materials($TOKUSO\;A-1{\alpha}^{(R)},\;Permlastic^{(R)}\;light\;bodied,\;Panasil^{(R)}\;contact$), there was no significant difference between hand mixing and mechanical mixing method 5. The surface detail reproduction was only influenced by impression materials, and produced better in order of $TOKUSO\;A-1{\alpha}^{(R)},\;Panasil^{(R)}\;contact,\;Permlastic^{(R)}$ light bodied. There was significat difference among 3 type of impression materials(p<0.05). From the above results, void formation is influenced by mixing methods and surface detail reproduction is influenced by impression materials than mixing methods. Therefore, to fabricate accurate restorations, proper impression material and mechanical mixing method are more effective and available clinically.

A study on improving the surface structure of solar cell and increasing the light absorbing efficiency - Applying the structure of leaves' surface - (태양전지 텍스처 표면구조 개선 및 빛 흡수효율 향상에 관한 연구 - 식물 잎의 표면구조 적용 -)

  • Kim, Taemin;Hong, Joopyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • Biomimetc is a new domain of learning that proposes a solution getting clues from nature. There seems to be a sign of this phenomenon in fields of Renewable Energy. Foe example, Wind power was imitate the whale's fin that was improve efficiency of generating energy. This study focused on the photovoltaic generation as the instance of applying biomimetic. Efficiency is the most important factor in field of Photovoltaic generation. When given solar cell taking the sun light, most important fields of the study are absorb more light and increase the quantity of generation. For improving efficiency, the solar cell were builded up textures of taking a pyramid form, such a surface structure taking a role for remaining the light. This effects do the role as increasing absorbing efficiency. Such phenomenon calls Light Trapping, locking up the light on the surface of solar cell for a long time. Light is a vital factor to plants in the nature. Plants grow up through the photosynthesis that absorbing light for growth and propagation. So, plants make a effort how can absorb more the light in poor surroundings. This study set up a goal that imitates the minute surface structure of plants and applies to the existing solar cells's surface structure, so it can improve the efficiency of absorbing light. We used Light Tools software analyzing geometrical optics to analyze efficiency about new designed textures on the computer. We made a comparison between existing textures and new designed textures. Consequently, new designed textures were advanced efficiency, absorbing rates of light increasing about 7 percent. In comparison with existing and new textures, advancing about 20 percent in the efficient aspect.

  • PDF

A Numerical Study of Flame Spread of A Surface Forest Fire (지표화 산불의 화염전파 수치해석)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Kim, Kwang-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.80-83
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-dimensional surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-dimensional surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals has a error of less than 20%.

  • PDF

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF