• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.032 seconds

A Combined Procedure of RSM and LHS for Uncertainty Analyses of CsI Release Fraction Under a Hypothetical Severe Accident Sequence of Station Blackout at Younggwang Nuclear Power Plant Using MAAP3.0B Code

  • Han, Seok-Jung;Tak, Nam-Il;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.507-521
    • /
    • 1996
  • Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current Probabilistic safety assessment. The main objective of the present study is to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a Hypothetical severe accident sequence of a station blackout at Younggwang nuclear power plant using MAAP3. OB code as a benchmark problem. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficient (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results that can be obtained by the combined procedure proposed in the present work.

  • PDF

Design and Analysis of a Controlled Diffusion Aerofoil Section for an Axial Compressor Stator and Effect of Incidence Angle and Mach No. on Performance of CDA

  • Salunke, Nilesh P.;Channiwala, S.A.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • This paper deals with the Design and Analysis of a Controlled Diffusion Aerofoil (CDA) Blade Section for an Axial Compressor Stator and Effect of incidence angle and Mach No. on Performance of CDA. CD blade section has been designed at Axial Flow Compressor Research Lab, Propulsion Division of National Aerospace Laboratories (NAL), Bangalore, as per geometric procedure specified in the U.S. patent (4). The CFD analysis has been performed by a 2-D Euler code (Denton's code), which gives surface Mach No. distribution on the profiles. Boundary layer computations were performed by a 2-D boundary layer code (NALSOF0801) available in the SOFFTS library of NAL. The effect of variation of Mach no. was performed using fluent. The surface Mach no. distribution on the CD profile clearly indicates lower peak Mach no. than MCA profile. Further, boundary layer parameters on CD aerofoil at respective incidences have lower values than corresponding MCA blade profile. Total pressure loss on CD aerofoil for the same incidence range is lower than MCA blade profile.

Development of Computer Code for Simulation of Multicomponent Aerosol Dynamics -Uncertainty and Sensitivity Analysis- (다성분 에어로졸계의 동특성 묘사를 위한 전산 코드의 개발 -불확실성 및 민감도 해석-)

  • Na, Jang-Hwan;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.85-98
    • /
    • 1987
  • To analyze the aerosol dynamics in severe accidents of LMFBR, a new computer code entitled MCAD (Multicomponent Aerosol Dynamics) has been developed. The code can treat two component aerosol system using relative collision probability of each particles as sequences of accident scenarios. Coagulation and removal mechanisms incorporating Brownian diffusion and gravitational sedimentation are included in this model. In order to see the effect of particle geometry, the code makes use of the concept of density correction factor and shape factors. The code is verified using the experimental result of NSPP-300 series and compared to other code. At present, it fits the result of experiment well and agrees to the existing code. The input variables included are very uncertain. Hence, it requires uncertainty and sensitivity analysis as a supplement to code development. In this analysis, 14 variables are selected to analyze. The input variables are compounded by experimental design method and Latin hypercube sampling. Their results are applied to Response surface method to see the degree of regression. The stepwise regression method gives an insight to which variables are significant as time elapse and their reasonable ranges. Using Monte Carlo Method to the regression model of LHS, the confidence level of the results of MCAD and their variables is improved.

  • PDF

Analysis of error correction capability and recording density of an optical disc system with LDPC code (LDPC 코드를 적용한 광 디스크 시스템의 에러 정정 성능 및 기록 용량 분석)

  • 김기현;김현정;이윤우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.537-540
    • /
    • 2003
  • In this paper, we evaluated error correction performance and recording density of an optical disc system. The performance of Low-Density Parity Check code (LDPC) is compared to the HD-DVD (BD) ECC. The recording density of optical disc can be increased by reducing the redundancy of the user data. Moreover, since the correction capability of LDPC with decreased redundancy is better than that of BD, the recording density can also be increased by reducing the mark length of the data on the disc surface.

  • PDF

A Study on the Defect Formation in Conform Process (CONFORM공정에서의 결함생성에 관한 연구)

  • 김영호;조진래;곽인섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.210-213
    • /
    • 1995
  • In this study,the effect of both process parameters (wheel velocity, friction coefficients between die and billet, etc) and die-shape (abutment height and shape, flash gap, etc.) on the surface defect on forming process is theoretically investigated. For this work, computer simulation was performed by using the DEFORM, a commercial FEM code. Through numerous simulations with different parameters and die shapes, We propose one optimal die shape for CONFORM process which can remove surface defect.

  • PDF

A Study on the Generation of B-Spline Surface by 3D Measurement Data (3차원 측정 데이터의 B-스플라인 곡면식 적영에 대한 연구)

  • 구영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.76-81
    • /
    • 1998
  • The purpose of this study is the generation of B-spline surface by the 3D measurement data. The hardware of the system comprises PC and digitizing machine, machining center. There are three steps, (1) physical model measuring on the 3D laser digitizing machine, (2) B-spline surface modeling and Fairing, (3) CNC machining by the NC code. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

  • PDF

Hypersonic Viscous Interaction of Wedge Flows (극초음속 쐐기 유동의 Viscous Interaction)

  • Kim K. H.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.40-45
    • /
    • 1996
  • This paper discribes the viscous interaction of Hypersonic Wedge Flows using Roe FDS and AUSM+. For this purpose we developed the frozen and the equilibrium code and numerically simulated the viscous interaction by changing the surface temperature and the mach number. We used curve fitting data in NASA Reference Publication 1181, 1260 to calculate equilibrium properties. We compare the equilibrium flow with the frozen flow. We conclude that the mach number and the surface temperature are significant parameters, as the surface temperature and the mach number increase the viscous interaction becomes stronger, and we must consider high-temperature effects in hypersonic flow

  • PDF

CFD Code Development Using Open Source Libraries for Shipbuilding and Marine Engineering Industries (소스공개 라이브러리를 활용한 조선 및 해양 산업용 CFD 코드 개발)

  • Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.151-157
    • /
    • 2012
  • The present study explored the possibilities of the applications of open source libraries to shipbuilding and marine engineering industries. A computational fluid dynamics (CFD) code, termed SNUFOAM, was developed and tested for turbulent flow around a ship, free surface flow around a hull, cavitating flow, and vortex shedding dynamics around a cylinder. The results using the developed CFD codes were compared against existing experimental data and solution of commercial CFD codes. SNUFOAM showed the nearly same results as commercial CFD codes and proved to be an alternative to commercial CFD codes for shipbuilding and marine engineering industries.

VOLUME CAPTURING METHOD USING UNSTRUCTURED GRID SYSTEM FOR NUMERICAL ANALYSIS OF MULTIPHASE FLOWS (다상유동 해석을 위한 비정렬격자계를 사용한 체적포착법)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.201-210
    • /
    • 2009
  • A volume capturing method using unstructured grid system for numerical analysis of multiphase flows is introduced in the present paper. This method uses an interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The novelty of CICSAM lies in the adaptive combination of high resolution discretization scheme which ensures the preservation of the sharpness and shape of the interface while retaining boundedness of the field, and no explicit interface reconstruction which is perceived to be difficult to implement on unstructured grid system. Several typical test cases for multiphase flows are presented, which are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with CICSAM. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows.

  • PDF

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF