• Title/Summary/Keyword: surface coal mine

Search Result 52, Processing Time 0.017 seconds

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.