• Title/Summary/Keyword: surface characteristics

Search Result 15,971, Processing Time 0.038 seconds

Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types (접촉면 처리 방식에 따른 석탑의 내진 특성 평가)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Won, Tae-Ho;Jeon, Geon-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.

Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device (ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF

A Visualization Study on the Characteristics of Droplets Impinging on a Hot Surface (고온 열판에 충돌하는 액적의 거동에 대한 유동가시화 연구)

  • Kim, Dong-Yeon;Yi, Seung-Jae;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Hydrophobic characteristics of high temperature metal surface were investigated by high-speed visualization of water droplet impact. An aluminum plate was used as the sample plate and the initial diameter of a water droplet was 2 mm. Transient behavior of a single droplet impinging on the surface with and without heating was captured by using a high speed camera running at 4,000 frames per second. The Leidenfrost phenomenon was demonstrated for the case of $300^{\circ}C$ surface temperature, however there was no rebounding of droplet on the cold plate due to hydrophilic nature. The experimental results show that the shape evolution of a droplet impinging on the surface varies with the Weber number, i.e. the ratio of impact inertia to capillary force. The overall water-repellent characteristics of the heated surface was very similar to that of the super hydrophobic surfaces.

Effect of surface roughness of AZO thin films on the characteristics of OLED device (AZO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, B.K.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.25-29
    • /
    • 2010
  • We have investigated the effect of surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of AZO thin films, we have processed photo-lithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the AZO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the AZO thin films. Device structure was AZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer. The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

Characteristics of Si impurity doped MgO in an ac PDP

  • Ha, Chang-Hoon;Kim, Joong-Kyun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1391-1394
    • /
    • 2007
  • In this work, the discharge characteristics and temporal distribution of surface charges on the Sidoped MgO have been investigated and elucidated with the results of photon-induced surface current. Even though the Si doped MgO shows lower static voltage margin, higher luminous efficacy, and shorter statistical delay time, its discharge characteristics become deteriorated as the timing of scanning is delayed from the ramp type reset pulse down. Overall features of Si-doped MgO in discharge characteristics are well correlated with surface current characteristics.

  • PDF

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.

Fabrication and Characteristics of Humidity Sensing Device using $TiO_2$ Sol ($TiO_2$ Sol을 이용한 습도감지소자의 제작 및 특성)

  • Kim, Jong-Taek;Lee, Baek-Su;Kim, Cheol-Su;Yu, Do-Hyeon;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.82-86
    • /
    • 2000
  • Humidity sensors using $TiO_2$ thin films were fabricated on the multi-electrode device by Sol-Gel method and their wettability, surface potential decays and humidity sensing characteristics were investigated. Contact angle of thin films was $28^{\cic}\;at\; 400^{\circ}C$ and surface potential decayed rapidly at $400^{\circ}C$. The specimen showed best humidity sensing characteristics at $400^{\circ}C$. From the results, they were confirmed that humidity sensing characteristics of thin films have connection with contact angle and surface potential decays.

  • PDF

Analytical Study for dispersed Phase Velocity Information of Love Waves (러브파의 위상속도 분산정보에 관한 해석적 연구)

  • 이일화
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

Effects of Alloying Elements on the Surface Characteristics of Fe-38Al Intermetallic Compounds (Fe-38 at.% Al계 금속간화합물의 표면특성에 미치는 합금원소의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • Effects of alloying elements on the surface characteristics of Fe-38Al intermetallic compounds were investigated using potentiostat. The specimens were casted by the vacuum arc melting. The subsequent homogenization and the stabilization led to the homogeneous DO$_3$ structure of the specimen. After the corrosion tests, the surface of the tested specimen was observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-38 at.% Al intermetallic compound, the addition of Cr and Mo proved to be beneficial in decreasing the grain boundary attack by decreasing the active current density. Addition of Band Nb resulted in a higher active current density and also a higher passive current density. These results indicated the role of Cr and Mo in improving the pitting corrosion resistance of Fe-38 at.%Al intermetallic compound. Band Nb addition to Fe-38 at.%Al accelerated the granular corrosion. Fe-38 at.%Al containing Cr and Mo showed remarkably improved pitting corrosion resistance in comparison with Band Nb addition to Fe-38 at. %Al.