• 제목/요약/키워드: surface carrier density

검색결과 83건 처리시간 0.031초

DOPING EFFICIENCIES OF OXYGEN VACANCY AND SN DONOR FOR ITO AND InO THIN FILMS

  • Chihara, Koji;Honda, Shin-ichi;Watamori, Michio;Oura, Kenjiro
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.876-879
    • /
    • 1996
  • The effect of oxygen vacancy and Sn donor on carrier density for Indium Tin oxide (ITO) and Indium oxide (InO) films has been investigated. Hot-cathode Penning discharge sputtering (HC-PDS) in the mixed gasses of argon and oxygen was applied to fabricate the ITO and InO films. Density of oxygen vacancy was estimated using a high-energy ion beam technique. The electrical properties of the films such as resistivity, carrier density and mobility were estimated by Van der Pauw method. The doping efficiency of oxygen vacancy could be obtained from the relationship between oxygen vacancy and carrier density. The doping efficiency of oxygen vacancy for ITO films resulted in a quite small value. Comparing the doping efficiencies of ITO and InO films, the effect of Sn donor on carrier density was also discussed.

  • PDF

기계적 손상에 의한 실리콘 웨이퍼의 반송자 수명과 표면 거칠기와의 관계 (Relationships between Carrier Lifetime and Surface Roughness in Silicon Wafer by Mechanical Damage)

  • 최치영;조상희
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.27-34
    • /
    • 1999
  • We investigated the effect of mechanical back side damage in viewpoint of electrical and surface morphological characteristics in Czochralski silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductance decay technique, atomic force microscope, optical microscope, wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage degree, the lower the minority carrier lifetime, and surface roughness, damage depth and density of oxidation induced stacking fault increased proportionally.

  • PDF

원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구 (Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition)

  • 홍희경;허재영
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.111-115
    • /
    • 2015
  • 실리콘 태양전지의 효율을 향상하기 위해서는 소수 캐리어의 높은 수명이 필수조건이다. 따라서, 이를 달성하기 위한 실리콘 표면결함을 없애줄 수 있는 부동화(passivation) 기술이 매우 중요하다. 일반적으로 PECVD 법이나 열산화 공정을 통해 얻어진 $SiO_2$ 박막이 부동화 층으로 많이 사용되나 1000도에 이르는 고온 공정과 낮은 열적 안정성이 문제로 여겨진다. 본 연구에서는 원자층 증착법을 이용하여 400도 미만의 저온 공정을 통해 $Al_2O_3$ 부동화 박막을 형성하였다. $Al_2O_3$ 박막은 고유의 음의 고정 전하밀도로 인해 낮은 표면 재결합속도를 보이는 것으로 알려져 있다. 본 연구에서는 질소 도핑을 통해 높은 음의 고정 전하 밀도를 얻고 이를 통해 좀 더 향상된 실리콘 표면 부동화 특성을 얻고자 하였다.

The $Al_2O_3$ Passivation Mechanism for c-Si Surface Deposited by ALD Using $O_3$ Oxidant

  • 조영준;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.320.1-320.1
    • /
    • 2013
  • We have investigated the effect of surface passivation for crystalline silicon solar cell using ozone-based atomic layer deposited (ALD) $Al_2O_3$. We examined passivation properties such as uniformity, carrier lifetime, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using microwave photoconductance decay (PCD). Ozone-based ALD $Al_2O_3$ film shows the best carrier lifetime at lower deposition temperature than $H_2O$-based ALD.

  • PDF

온도변화에 따른 HEMT의 DC 특성 연구 (Temperature dependency of dc Characteristics for HEMTs)

  • 김진욱;황광철;이동균;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2000
  • In this paper, an analytical model for I-V characteristics of a HEMTs is Proposed. The developed model takes into account the temperature dependence of drain current. In high-speed ICs for optical communication systems and mobile communication systems, temperature variation affects performance; for example the gain, efficiency in analog circuits and the delay time, power consumption and noise mrgin in digital circuits. To design such a circuit taking into account the temperature dependence of the current-voltage characteristic is indispensible. This model based on the analytical relation between surface carrier density and Fermi potential including temperature dependent coefficients.

  • PDF

RF 마그네트론 스퍼터링을 이용한 Bismuth 박막의 제조와 그 전기적 특성 연구 (Preparation of Bismuth Thin Films by RF Magnetron Sputtering and Study on Their Electrical Transport Properties)

  • 김동호;이건환
    • 한국표면공학회지
    • /
    • 제38권1호
    • /
    • pp.7-13
    • /
    • 2005
  • Bismuth thin films were prepared on glass substrate with RF magnetron sputtering and effects of substrate temperature on surface morphology and their electrical transport properties were investigated. Grain growth of bismuth after nucleation and the onset of coalescense of grains at 393 K were observed with field emission secondary electron microscopy. Continuous thin films could not be obtained above 473 K because of grain segregation and island formation. Hall effect measurements showed that substrate heating yields the decrease of carrier density and the increase of mobility. Resistivity of bismuth film has its minimum (about 0.7 x 10/sup -3/ Ωcm) in range of 403~433 K. Annealing of bismuth films deposited at room temperature was carried out in a radiation furnace with flowing hydrogen gas. The change of resistivity was not significant due to cancellation of the decrease of carrier density and the increase of mobility. The abrupt change of electrical properties of film annealed above 523 K was found to be caused by partial oxidation of bismuth layer in x-ray diffraction analysis.

실리콘 웨이퍼에서 소수 반송자 재결합 수명과 표면 부위 미세 결함에 의한 기계적 손상 평가 (Estimation of mechanical damage by minority carrier recombination lifetime and near surface micro defect in silicon wafer)

  • 최치영;조상희
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.157-161
    • /
    • 1999
  • 초크랄스키 실리콘 기판의 뒷면에 형성된 기계적 손상이 미치는 효과에 대하여 고찰하였다. 기계적 손상의 정도는 레이저 여기/극초단파 반사 광전도 감쇠법에 의한 소수반송자 재결합 수명, 습식산화/선택적 식각 방법, 표면 부위 미소 결함 및 X-선 단면 측정 분석으로 평가하였다. 그 결과, 웨이퍼 뒷면에 가해지는 기계적 손상의 세기가 강할수 록 소수반송자 재결합 수명은 짧아지고, 표면 부위 미소 결함 밀도는 비례적으로 증가하였으며, 산화 유기 적충 결함 밀 도와도 상호 일치하였다. 그래서, 표면 부위 미소 결함 기술은 산화 유기 적층 결함을 측정하는데 있어서 통상적인 부식 방법과는 별도로 사용될 수 있다.

  • PDF

밀도함수법을 이용한 2차원 슬로싱 현상의 수치시뮬레이션 (Numerical Simulation of Two-dimensional Sloshing Phenomena Using Marker-density Method)

  • 이영길;정광열;이승희
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.650-658
    • /
    • 2009
  • Two dimensional sloshing phenomena in regularly excited liquid cargo tank are numerically simulated with finite difference method. Navier-Stokes equations and continuity equation are computed for this study. The free-surface is determined every time step satisfying kinematic boundary condition using marker-density method. And the exciting force is treated by adding the acceleration of the tank to source term. The results are compared with other existing experiment results. And the comparison results show a good agreement. The sloshing phenomena in the tank of the 138K LNG carrier in sway motion is simulated with present calculation methods in low filling level. To find the relations between impact pressure and excitation condition, the calculations are performed in various amplitudes and periods. The averaged maximum pressures are compared each other.

Nano scale characterizations of semiconductor materials and devices with SPM

  • Park, Sang-il
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.19-19
    • /
    • 1998
  • Scanning pprobe Microscoppy (SppM) is a ppowerful surface chracterization technology which can measure not only surface toppograpphy but also various ppropperties of the sampple with unpprecedented sensitivity and sppatial resolution. Recent developpment of electrostatic force microscoppe (EFM) and scanning cappacitance microscoppe (SCM) allows us to measure surface ppotential distribution and cappacitance variation n semiconductor devices. The cappacitance image pprovide us valuable information on carrier density and dopping pprofile.

  • PDF

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • 만민탄;이홍석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF