• Title/Summary/Keyword: surface adhesion

Search Result 2,035, Processing Time 0.024 seconds

Nanotribological characteristics of silicon surfaces modified by IBAD (IBAD로 표면개질된 실리콘표면의 나노 트라이볼로지적 특성)

  • 윤의성;박지현;양승호;공호성;장경영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.127-134
    • /
    • 2001
  • Nano adhesion and friction between a Sj$_3$N$_4$ AFM tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and Si-wafer of different surface roughness were used. Results showed that nano adhesion and friction decreased as the surface roughness increased. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the normal load was low.

  • PDF

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

Properties of Silicone-coated Fabric for Membrane Treated by Oxygen Low Temperature Plasma (산소 저온 플라즈마 처리에 의한 실리콘코팅 막 구조원단의 접착특성)

  • Park, Beob;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.195-200
    • /
    • 2011
  • Silicone-coated fabric were treated by oxygen low temperature plasma to improve the adhesion. The surface of silicone-coated fabric was modified with gaseous plasma of several discharge power in the presence of oxygen gas at 1Torr pressure. Oxygen plasma treatment introduces oxygen-containing functional groups and micro-pittings on the silicone-coated fabric surface. The treated fabrics with oxygen low temperature plasma were measured by contact angle analyzer and XPS(X-ray photoelectron spectroscopy), and interfacial adhesion was measured by T-peel test. The surface of fabric was investigated by SEM photographs. The chemical and physical modification of the surface wettabillity by plasma treatment can increase the adhesion.

Vibro-Contact Analysis of AFM Tip on Polymer Surface (폴리머 표면측정을 위한 AFM 팁의 접촉-진동 해석)

  • Hong, Sang-Hyuk;Lee, Soo-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.538-541
    • /
    • 2005
  • In tapping mode atomic force microscopy(TM-AFM). the vibro-contact response of a resonating tip is used to measure the nanoscale topology and other properties of a sample surface. However, the nonlinear tip-surface interact ions can affect the tip response and destabilize the tapping mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers and biomoleculars using conventional tapping mode control. In this study, theoretical and experimental investigations are made on the nonlinear dynamics and control of TM-AFM. To analyze the complex dynamics and control of the tapping tip, the classical contact models are adopted due to the surface adhesion. Also we report the surface adhesion is an additional important parameter to determine the control stability of TM-AFM. In addition, we prove that it is more adequate to use Johnson-Kendall-Roberts (JKR) contact model to obtain a reasonable tapping response in AFM for the soft and high adhesion samples.

  • PDF

Effect of Laser Surface Modification of Cemented Carbide Substrates on the Adhesion of Diamond Films (Cemented Carbide기판의 레이저 표면 개질이 다이아몬드 박막의 접합력에 미치는 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.170-176
    • /
    • 2000
  • A novel method for improving the adhesion of diamond films on cemented carbide tool inserts has been investigated. This method is based on the formation of a compositionally graded interface by developing a microrough surface structure using a pulsed laser process. Residual stresses of diamond films deposited on laser modified cemented carbides were measured as a function of substrate roughness using micro-Raman spectroscopy. The surface morphology and roughness of diamond films and cemented carbides were also investigated at different laser modification conditions. It was found that the increasing interface roughness reduced the average residual stress of diamond films, resulting in improved adhesion of diamond films on cemented carbides.

  • PDF

Structural Characteristisrics and Adhesion of Chemicaly Vapor Deposited TiN Films on Stainless Steels (화학증착된 TiN 박막의 구조적 특성 및 결합력에 관한 연구)

  • 이민섭;이성래;백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 1989
  • The structural Charactesties and adhesion of chemically vapor deposited TiN film on stain less steels have been investated as functions of deposition temperature, surface roughness of sub state, and types of substrates. The grain zine and the lattice parameter of TiN film decreased with decreasing roughness of substates. The(200) preferred orientation was developed dominatly and the lattlice parameter decreased as temperature intereased reardless of the surdless roughnessand type of the substrates used. The surface morphology of TiN film changed from bushed crystal to a plate and then to pyamidal dense crystals with an increase in the deposition temperature. The adhesion of TiN films increased with coating thinkness and decreased with surface roughness in general. The calculations using a Bejamin & Weaver's model have been compard. Maximum valuse of adhesion energy calculated using Laguier's model were W304=331Jm-2,w410=113Jm-2,andW430=107jm-2

  • PDF

Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment (상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상)

  • Kim, Taehyeon;Park, Woosang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

Study on Two Step Plasma Treatment for Electroless Cu Plating of Fluoropolymer (불소수지의 무전해 동도금을 위한 단계적 플라즈마 전처리법에 관한 연구)

  • Shin, Seung-Han;Han, Sung-Ho;Kim, Young-Seok
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.118-125
    • /
    • 2005
  • Low temperature plasma treatment with different gases and rf powers were performed to improve the adhesion strength between polytetrafluoroethylene(PTFE) and electroless deposited copper. According to the research, $H_2$ plasma having hydrogen radical was more effective in surface polarity modification than $O_2$ plasma due to the defluorination reaction. However, surface roughness of PTFE was more increased with $O_2$ than $H_2$ plasma. PTFE treated with $120W-O_2$ plasma and $250w-H_2$ plasma, consecutively showed rougher surface than single step $250w-H_2$ plasma treated one and more hydrophilic than single step $120W-O_2$ plasma treated one. And it showed 5B tape test grade, which is better adhesion property than 1B or 3B obtained by single step plasma treatment. In addition, adhesion strength between PTFE and Cu deposit is also deeply affected by residual water on its interface.

Adhesion of clay to metal surface; Normal and tangential measurement

  • Basmenj, Amir Khabbazi;Ghafoori, Mohammad;Cheshomi, Akbar;Azandariani, Younes Karami
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.125-135
    • /
    • 2016
  • Adhesion in geotechnical engineering is the interaction between cohesive soil and a solid surface which can cause clogging in mechanized tunnelling through clayey formations. Normal piston pull out and modified direct shear tests were performed on clayey soil samples to determine which type of adhesion stress, normal or tangential, could be most effectively measured. Measured values for normal adhesion ranged from 0.9 to 18 kPa. The range of tangential adhesion was 2.4 to 10 kPa. The results indicate normal adhesion results were more accurate than those for the modified direct shear test that measure tangential adhesion. Direct shear test on identical samples did not show any correlation between measured cohesion and normal adhesion values. Normal adhesion values have shown significantly meaningful variation with consistency index and so are compatible with the base of field clogging assessment criteria. But tangential adhesion and cohesion were not compatible with these assessment criteria.

Effect of Plasma Etching and $PdCl_2/SnCl_2$ Catalyzation on the Performance of Electroless Plated Copper Layer (플라즈마 에칭 및 $PdCl_2/SnCl_2$ 촉매조건이 무전해 동도금 피막의 성능에 미치는 영향)

  • 오경화;김동준;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.7
    • /
    • pp.843-850
    • /
    • 2003
  • Cu/PET film composites were prepared by electroless copper plating method. In order to improve adhesion between electroless plated Cu layer and polyester (PET) film, the effect of pretreatment conditions such as etching method, mixed catalyst composition were investigated. Chemical etching and plasma treatment increased surface roughness in decreasing order of Ar>HCl>O$_2$>NH$_3$. However, adhesion of Cu layer on PET film increased in the following order: $O_2$<Ar<HCl<NH$_3$. It indicated that appropriate surface roughness and introduction of affinitive functional group with Pd were key factors of improving adhesion of Cu layer. PET film was more finely etched by HCI tolution, resulting in an improvement in adhesion between Cu layer and PET film. Plasma treatment with NH$_3$produced nitrogen atoms on PET film, which enhances chemisorption of Pd$^{2+}$ on PET film, resulting in improved adhesion and shielding effectiveness of Cu layer deposited on the Pd catalyzed surface. Surface morphology of Cu plated PET film revealed that Pd/Sn colloidal particles became more evenly distributed in the smaller size by increasing the molar ratio of PdCl$_2$; SnCl$_2$from 1 : 4 to 1 : 16. With increasing the molar ratio of mixed catalyst, adhesion and shielding effectiveness of Cu plated PET film were increased.d.