• Title/Summary/Keyword: surface Crack

Search Result 2,002, Processing Time 0.019 seconds

Study on Manufacturing Techniques and Conservation for Earthenware Horn Cups with a Horse Head Decoration(Treasure) (보물 도기 말머리장식 뿔잔의 제작 기법 연구와 보존처리)

  • KWON, Ohyoung;HAM, Chulhee;YU, Jia;KIM, Hanseul;PARK, Changyuel
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • Earthenware horn cups with horse head decorations were excavated from Tomb No. 7 of Bokcheon-dong, Dongraegu, Busan Metropolitan City. Made of earth in the shape of a horn, these cups are considered to have been used to drink alcohol or beverage. Large numbers of earthenware horn cups of various shapes were excavated from tombs located in the old territories of Silla and Gaya. A pair of earthenware horn cups were excavated from Tomb No. 7, and the two cups are almost identical in overall shapes and manufacturing techniques despite different sizes. Conservation treatment was carried out for the bigger one of the two horn cups this time. There are two cracks toward the horse head decorations around the mouth with missing parts observed. The chest of the horse touches the ground with one side decorating the horse head and the other side facing the conical mouth of the horn cup. It is in the U shape, striking a balance based on two legs attached behind. The surface of the horn cup was made with a potter's wheel, and the connection to the horse head has traces of cutting and trimming. The horse head is expressed realistically with its features including the ears, eyes, nose, and mouth well apprehended and its color is grey This study intended to investigate manufacturing techniques of the artifact by examining its internal structure through the condition survey in a non-destructive way. CT imaging was used to figure out its manufacturing techniques and to diagnose its condition, and accordingly the scientific conservation treatment was conducted to stabilize the artifact. The precise diagnosis on conservation condition found that there are two chips in the spout with their cracks extended. One of the chips is connected with separation added to the crack. The material which has been used for connection in the past was collected for the infrared spectroscopic analysis, which was identified to be nitrocellulose resin for the connection. Therefore, this conservation treatment focused on removing the old material and preventing the spread of cracks. Before conservation treatment, the condition survey and scientific examination for the artifact were carried out to secure data about the earthenware horn cup with horse head decorations(Treasure). Based on them, effective plans for its conservation treatment was sought for and then existing adhesive was safely removed, and restoration material was selected to take into account its reversibility. In addition, the conservation treatment according to optimal methodologies was conducted through the consultation meeting with experts.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.