• Title/Summary/Keyword: suppressing activity

Search Result 446, Processing Time 0.027 seconds

Inhibitory Activity of Cordyceps bassiana Extract on LPS-induced Inflammation in RAW 264.7 Cells by Suppressing NF-κB Activation

  • Yoon, Deok Hyo;Han, Changwoo;Fang, Yuanying;Gundeti, Shankariah;Han Lee, In-Sook;Song, Won O;Hwang, Ki-Chul;Kim, Tae Woong;Sung, Gi-Ho;Park, Haeil
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Cordyceps bassiana has long been used as an oriental medicine and reported to possess diverse biological activities. The fruiting bodies of Cordyceps bassiana was extracted with ethanol and then further fractionated with n-hexane, ethyl acetate, n-butanol and water. The butanol fraction from Cordyceps bassiana (CBBF) exhibited the most effective in anti-inflammatory activity in RAW 264.7 macrophages and the roles of CBBF on the anti-inflammation cascade in LPS-stimulated RAW 264.7 cells were studied. To investigate the mechanism by which CBBF inhibits NO, iNOS and COX-2, the activation of $I{\kappa}B$ and MAPKs in LPS-activated macrophage were examined. Our present results demonstrated that CBBF inhibits NO production and iNOS expression in LPS-stimulated RAW 264.7 macrophage cells, and these effects were mediated through the inhibition of $I{\kappa}B-{\alpha}$, JNK and p38 phosphorylation. Also, CBBF suppressed activation of MAPKs including p38 and SAPK/JNK. Furthermore, CBBF significantly suppressed LPS-induced intracellular ROS generation. Its inhibition on iNOS expression, together with its antioxidant activity, may support its anti-inflammatory activity. Thus Cordyceps bassiana can be used as a useful medicinal food or drug for further studies.

Anti-inflammatory Effect of Evodia Officinalis $D_{ODE}$ in Mouse Macrophage and Human Vascular Endotherial Cells (마우스 대식세포 및 사람 혈관 내피세포에서 오수유(Evodia officinalis $D_{ODE}$) 메탄올 추출물의 항염증 효과)

  • Yun, Hyun-Jeung;Heo, Sook-Kyoung;Lee, Young-Tae;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2008
  • Objectives : Evodia officinalis DODE (EO), an herbal plant, has been widely used in traditional Korean medicine for the treatment of vascular diseases such as hypertension. The crude extract of EO contains phenolic compounds that are effective in protecting liver microsomes, hepatocytes, and erythrocytes against oxidative damage. But EO has been little found to have an anti-inflammatory activity. We investigated anti-inflammatory activity of EO in RAW 264.7 cells and human umbilical vein endothelial cells (HUVECs). Methods : Cytotoxic activity of EO on RAW 264.7 cells was investigated by using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines were measured by ELISA kit. The levels of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression were measured by flow cytometer. Results : EO decreased LPS-induced NO production in RAW 264.7 cells. The inhibitory activity of EO on LPS-induced NO release is probably associated with suppressing TNF-${\alpha}$, IL-6 and MCP-1 formation. These results indicate that EO has potential as an anti-inflammatory agent. Moreover, EO decreased TNF-${\alpha}$-induced IL-8, IL-6 production, and ICAM-1 and VCAM-1 expression in HUVECs. Conclusions : EO inhibits TNF-${\alpha}$-induced inflammation via decreasing cytokines production and adhesion molecules expression. These results indicate that EO has potential as an anti-inflammation and anti-artherosclerosis agent.

  • PDF

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line

  • Park, Jong-Shik;Bang, Ok-Sun;Kim, Jinhee
    • Integrative Medicine Research
    • /
    • v.3 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Background: The transcription factor signal transducer and activator of transcription 3 (Stat3)is constitutively activated in many human cancers. It promotes tumor cell proliferation,inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor hostimmune responses. Therefore, Stat3 has emerged as a promising molecular target for cancertherapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicinestraditionally used in Korea.Methods: Medicinal herb extracts in 70% ethanol were screened for their ability to suppressStat3 in the A549 human lung cancer cell line. A Stat3-responsive reporter assay system wasused to detect intracellular Stat3 activity in extract-treated cells, and Western blot analyseswere performed to measure the expression profiles of Stat3-regulated proteins.Results: Fifty percent of the 38 extracts possessed at least mild Stat3-suppressive activities(i.e., activity less than 75% of the vehicle control). Ethanol extracts of Bupleurum falcatumL., Taraxacum officinale Weber, Solanum nigrum L., Ulmus macrocarpa Hance, Euonymus alatusSieb., Artemisia capillaris Thunb., and Saururus chinensis (Lour.) Baill inhibited up to 75% of thevehicle control Stat3 activity level. A549 cells treated with these extracts also had reducedBcl-xL, Survivin, c-Myc, and Mcl-1 expression.Conclusion: Many medicinal herbs traditionally used in Korea contain Stat3 activity-suppressing substances. Because of the therapeutic impact of Stat3 inhibition, these resultscould be useful when developing novel cancer therapeutics from medicinal herbs.

Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway

  • Masraksa, Wuttipong;Tanasawet, Supita;Hutamekalin, Pilaiwanwadee;Wongtawatchai, Tulaporn;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Non-small cell lung cancer is mostly recognized among other types of lung cancer with a poor prognosis by cause of chemotherapeutic resistance and increased metastasis. Luteolin has been found to decrease cell metastasis. However, its underlying mechanisms remain unresolved. The objective of this study was to examine the effect (and its mechanism) of luteolin on the migration and invasion of human non-small cell lung cancer A549 cells. MATERIALS/METHODS: Cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Wound healing and transwell assays were evaluated to assess migration and invasion, respectively. Western blot analysis and immunofluorescence were further performed to investigate the role of luteolin and its mechanisms of action. RESULTS: Administration with up to 40 μM luteolin showed no cytotoxic activity on lung cancer A549 cells or non-cancer MRC-5 cells. Additionally, luteolin at 20-40 μM significantly suppressed A549 cells' migration, invasion, and the formation of filopodia in a concentration-dependent manner at 24 h. This is similar with western blot analysis, which revealed diminished the phosphorylated focal adhesion kinase (pFAK), phosphorylated non-receptor tyrosine kinase (pSrc), Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division control protein 42 (Cdc42), and Ras homolog gene family member A (RhoA) expression levels. CONCLUSIONS: Overall, our data indicate that luteolin plays a role in controlling lung cancer cells' migration and invasion via Src/FAK and its downstream Rac1, Cdc42, and RhoA pathways. Luteolin might be considered a promising candidate for suppressing invasion and metastasis of lung cancer cells.

Identification of the Constituents for Nrf2 Activation and NF-${\kappa}B$ Suppression in Dangguisoo-san

  • Kim, Kyun-Ha;Jeong, Ja-Haeng;Jeong, Han-Sol;Ha, Ki-Tae;Joo, Myung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • Previously, we showed that Dangguisoo-san (DGSS), an herbal formula that has been traditionally used for the treatment of blood stagnation, is also applicable for inflammatory lung diseases. Activation of Nrf2, an anti-inflammatory transcription factor, and suppression of NF-${\kappa}B$, a pro-inflammatory transcription factor, were suggested as an underlying mechanism. However, the constituents responsible for these activities remain unidentified. To this end, we prepared the water extracts of the 9 constituents of DGSS and tested for their effect on Nrf2 by using an Nrf2-Luciferase reporter cell line and western blot analysis. Results show that Carthamus tinctorius L.(CT), one of the 9 constituents of DGSS, strongly activated Nrf2. Similarly, when measured the effect of the 9 constituents on NF-${\kappa}B$ by using an NF-${\kappa}B$-Luciferase reporter cell line and western blotting for nuclear p65, indicative of activated NF-${\kappa}B$, most constituents were capable of suppressing NF-${\kappa}B$ in various degrees. However, CT and Cyperus rotundus L. (CR) strongly suppressed NF-${\kappa}B$ activity elicited by LPS. Of note, CT activated Nrf2 and suppressed NF-${\kappa}B$ strongly as well. Our results contributes to corroborating the anti-inflammatory effects of DGSS by identifying CT and CR as two major herbs responsible for activating Nrf2 and suppressing NF-${\kappa}B$. These results suggest that CT and CR represent some of the effects of DGSS in the regulation of inflammation.

Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells

  • Lu, Yue;Son, Jong-Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.526-531
    • /
    • 2012
  • During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$), cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$), and on phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid ($PGD_2$ and $LTC_4$) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of $PLC{\gamma}1$, intracellular $Ca^{2+}$ influx, the translocation of cytosolic phospholipase $A_2$ ($cPLA_2$) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular $Ca^{2+}$ influx by inhibiting $PLC{\gamma}1$ phosphorylation and suppressing the nuclear translocations of $cPLA_2$ and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.

Effects of Gagamgilgyung-tang on the Proliferation and Apoptosis of Human Lung Cancer Cell (가감길경탕이 인체 폐암세포의 증식 및 사멸에 미치는 영향에 관한 연구)

  • 이충섭;정희재;신순식;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.24-36
    • /
    • 2002
  • Objectives: The chemotherapeutic potential of Gagamgilgyung-tang for the treatment of human lung cancer, the antitumorigenic effects of Gagamgilgyung-tang on the proliferation and apoptosis of human lung cancer cell line A427 were investigated using molecular biological approaches, Methods: To determine Gagamgilgyung-tang concentrations which do not evoke cytotoxic damage to the cell line, cell viability was examined by MTT assay. To prove Gagamgilgyung-tang's antitumorigenic potential to human lung cancer, [3H]thymidine incorporation assay, trypan blue exclusion and Cpp32 protease activity assays and quantitative RT-PCR analysis were examined. Results: While A427 cells treated with $0.1-2.0{\mu\textrm{g}}/ml$ of Gagamgilgyung-tang showed no recognizable effect, marked reductions of cell viability were detected at concentrations over $5.0{\;}\mu\textrm{g}/ml$. DNA replication of A427 cells was inhibited by Gagamgilgyung-tang in a dose-dependent manner and Gagamgilgyung-tang induced the G1 cell cycle arrest through inhibition of DNA replication. Gagamgilgyung-tang triggered apoptotic cell death of A427 and enhanced the apoptotic sensitivity of the cells that were injured by a DNA damage-inducing chemotherapeutic drug etoposide. Gagamgilgyung-tang induces expression of growth-inhibiting genes such as p53 and p21/Wafl whereas it inhibited expression of growth-promoting genes such as c-Myc and Cyclin D1. Expression of a representative apoptosis-inducing gene Bax was also found to be induced by Gagamgilgyung-tang while apoptosis-suppressing Bcl-2 expression was not changed. Conclusions: Gagamgilgyung-tang could suppress the abnormal growth of tumor cells by suppressing the survival of genetically altered cells via induction of apoptosis. This study suggests that Gagamgilgyung-tang might have an antitumorigenic potential to human lung cancer cells, which might be associated with its growth-inhibiting and apoptosis-inducing properties.

  • PDF

Rhodanthpyrone A and B play an anti-inflammatory role by suppressing the nuclear factor-κB pathway in macrophages

  • Kim, Kyeong Su;Han, Chang Yeob;Han, Young Taek;Bae, Eun Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.493-499
    • /
    • 2019
  • Macrophage-associated inflammation is crucial for the pathogenesis of diverse diseases including metabolic disorders. Rhodanthpyrone (Rho) is an active component of Gentiana rhodantha, which has been used in traditional Chinese medicine to treat inflammation. Although synthesis procedures of RhoA and RhoB were reported, the biological effects of the specific compounds have never been explored. In this study, the anti-inflammatory activity and mechanisms of action of RhoA and RhoB were studied in lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with RhoA and RhoB decreased inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW 264.7 cells and in thioglycollate-elicited mouse peritoneal macrophages. In addition, it downregulated transcript levels of several inflammatory genes in LPS-stimulated RAW 264.7 cells, including inflammatory cytokines/chemokines (Tnfa, Il6, and Ccl2) and inflammatory mediators (Nos2 and Ptgs2). Macrophage chemotaxis was also inhibited by treatment with the compounds. Mechanistic studies revealed that RhoA and RhoB suppressed the nuclear factor $(NF)-{\kappa}B$ pathway, but not the canonical mitogen activated protein kinase pathway, in LPS-stimulated condition. Moreover, the inhibitory effect of RhoA and RhoB on inflammatory gene expressions was attenuated by treatment with an $NF-{\kappa}B$ inhibitor. Our findings suggest that RhoA and RhoB play an anti-inflammatory role at least in part by suppressing the $NF-{\kappa}B$ pathway during macrophage-mediated inflammation.

Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma

  • Qi, Peng;Wei, Chunhua;Kou, Dianbo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.555-564
    • /
    • 2021
  • We investigated the effects of naringenin and morin on IL-5 and ROS production in PMA+ionomycin-treated EL-4 cells with the corroboration of their antioxidant and anti-inflammatory properties using an asthma-induced mouse model. The EL-4 cell line was used to study the outcomes of naringenin or morin, followed by cell viability studies. Western blot analysis and ELISA test were used to determine Th2 mediated cytokines. In vivo studies were carried out on BALB/c mice to induce allergic asthma using ovalbumin administered intraperitoneally. Intracellular ROS was determined using 2',7'-dichlorodihydrofluorescein diacetate, followed by serum enzymatic (AST and ALT) estimations and inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and lung tissues. Histopathological studies were conducted to examine lung tissue-stained architecture. Our findings suggested that naringenin and morin significantly suppressed IL-5 and ROS production via various pathways. Interestingly, by reducing NFAT activity, naringenin and morin stimulated HO-1 expression, thereby suppressing IL-5 secretion due to regulating the transcription factor Nrf2 via P13/Akt or ERK/JNK signalling pathways in EL-4 cells, demonstrating the involvement of HO-1 expression in inhibiting asthmatic inflammation. The increased inflammatory cells in the BALF were substantially decreased by both naringenin and morin, followed by inhibition in the elevated Th-2 cytokines levels. The TNF-α protein levels in an allergic asthma mouse model were significantly reduced by suppressing Akt phosphorylation and eosinophil formation. Recent findings confirmed that naringenin and morin possess the potential to control asthma-related immune responses through antioxidant and anti-inflammatory properties, indicating potential therapeutic agents or functional foods.