• Title/Summary/Keyword: support vector machines (SVMs)

검색결과 92건 처리시간 0.028초

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

A Study on the Development of Adaptive Learning System through EEG-based Learning Achievement Prediction

  • Jinwoo, KIM;Hosung, WOO
    • 4차산업연구
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose - By designing a PEF(Personalized Education Feedback) system for real-time prediction of learning achievement and motivation through real-time EEG analysis of learners, this system provides some modules of a personalized adaptive learning system. By applying these modules to e-learning and offline learning, they motivate learners and improve the quality of learning progress and effective learning outcomes can be achieved for immersive self-directed learning Research design, data, and methodology - EEG data were collected simultaneously as the English test was given to the experimenters, and the correlation between the correct answer result and the EEG data was learned with a machine learning algorithm and the predictive model was evaluated.. Result - In model performance evaluation, both artificial neural networks(ANNs) and support vector machines(SVMs) showed high accuracy of more than 91%. Conclusion - This research provides some modules of personalized adaptive learning systems that can more efficiently complete by designing a PEF system for real-time learning achievement prediction and learning motivation through an adaptive learning system based on real-time EEG analysis of learners. The implication of this initial research is to verify hypothetical situations for the development of an adaptive learning system through EEG analysis-based learning achievement prediction.

머신러닝을 이용한 이러닝 학습자 집중도 평가 연구 (A Study on Evaluation of e-learners' Concentration by using Machine Learning)

  • 정영상;주민성;조남욱
    • 디지털산업정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.67-75
    • /
    • 2022
  • Recently, e-learning has been attracting significant attention due to COVID-19. However, while e-learning has many advantages, it has disadvantages as well. One of the main disadvantages of e-learning is that it is difficult for teachers to continuously and systematically monitor learners. Although services such as personalized e-learning are provided to compensate for the shortcoming, systematic monitoring of learners' concentration is insufficient. This study suggests a method to evaluate the learner's concentration by applying machine learning techniques. In this study, emotion and gaze data were extracted from 184 videos of 92 participants. First, the learners' concentration was labeled by experts. Then, statistical-based status indicators were preprocessed from the data. Random Forests (RF), Support Vector Machines (SVMs), Multilayer Perceptron (MLP), and an ensemble model have been used in the experiment. Long Short-Term Memory (LSTM) has also been used for comparison. As a result, it was possible to predict e-learners' concentration with an accuracy of 90.54%. This study is expected to improve learners' immersion by providing a customized educational curriculum according to the learner's concentration level.

Text Classification Using Parallel Word-level and Character-level Embeddings in Convolutional Neural Networks

  • Geonu Kim;Jungyeon Jang;Juwon Lee;Kitae Kim;Woonyoung Yeo;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • 제29권4호
    • /
    • pp.771-788
    • /
    • 2019
  • Deep learning techniques such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) show superior performance in text classification than traditional approaches such as Support Vector Machines (SVMs) and Naïve Bayesian approaches. When using CNNs for text classification tasks, word embedding or character embedding is a step to transform words or characters to fixed size vectors before feeding them into convolutional layers. In this paper, we propose a parallel word-level and character-level embedding approach in CNNs for text classification. The proposed approach can capture word-level and character-level patterns concurrently in CNNs. To show the usefulness of proposed approach, we perform experiments with two English and three Korean text datasets. The experimental results show that character-level embedding works better in Korean and word-level embedding performs well in English. Also the experimental results reveal that the proposed approach provides better performance than traditional CNNs with word-level embedding or character-level embedding in both Korean and English documents. From more detail investigation, we find that the proposed approach tends to perform better when there is relatively small amount of data comparing to the traditional embedding approaches.

Support Vector Machine을 이용한 온라인 리뷰의 용어기반 감성분류모형 (Terms Based Sentiment Classification for Online Review Using Support Vector Machine)

  • 이태원;홍태호
    • 경영정보학연구
    • /
    • 제17권1호
    • /
    • pp.49-64
    • /
    • 2015
  • SNS의 확산으로 온라인 상점에서는 상품에 대한 주관적인 의견이 내포되어 있는 고객리뷰 정보가 빠르게 생성되고 확산되어 다른 고객들에게 큰 영향을 미치고 있다. 이와 더불어, 고객들의 긍정적 또는 부정적 의견을 분석하여 개선방안을 모색하려는 오피니언마이닝(opinion mining)이 주목 받고 있다. 고객리뷰에 내포된 감성정보를 가진 용어들은 감성분류를 하는데 가장 중요한 역할을 하기 때문에 영향력이 높은 용어를 선별하는 것이 가장 중요하다. 본 연구에서는 품사태깅을 이용하여 최적의 용어들을 선별하고 용어정보에 기반한 문서수준에서의 감성분류모형을 제안하고자 한다. 고객리뷰의 감성분류모형에 대표적인 기계학습기법인 SVM을 적용하고, SVM의 입력변수 선정과정에 품사태깅 방식과 용어추출기법을 다르게 조합하고 사용하여 긍정적/부정적 문서를 분류하였다. 본 연구에서 제안한 감성분류모형의 성과를 검증하기 위해 아마존(Amazon.com)의 영화와 도서에 대한 고객리뷰 80,000개를 수집하여 불필요한 용어들을 제거한 후 품사태깅을 통해 용어를 추출하였다. 추출된 용어는 문서빈도, TF-IDF, 정보획득량, 카이제곱 통계량의 값을 산출하여 값을 통해 용어들을 순위화하고, 각 상위 20개에 해당하는 최적의 용어를 선정한 후 SVM을 이용하였다. 제안된 감성분류모형을 통해 기존 연구에서 언급한 형용사만을 사용한 예측변수와 4품사를 사용한 예측변수에서의 실험결과를 통해 비교 분석하였다. 카이제곱 통계량 기반의 감성분류모형이 다른 모형보다 예측성과가 가장 우수하게 나타나는 것을 확인할 수 있었다. 본 연구에서 제안된 문서수준에서의 용어기반 감성분류모형을 이용함으로써 온라인 상점에서의 서비스 개선과 경쟁력 확보에 많은 도움이 될 것으로 기대된다.

시간적 근접성 향상을 통한 효율적인 SVM 기반 음성/음악 분류기의 구현 방법 (Efficient Implementation of SVM-Based Speech/Music Classifier by Utilizing Temporal Locality)

  • 임정수;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.149-156
    • /
    • 2012
  • 서포트벡터머신 (support vector machine)을 이용한 음성/음악 분류기는 높은 분류 정확도로 주목받고 있으나 많은 계산 량과 저장 공간을 요구하므로 특히 임베디드 시스템과 같이 자원이 제한 적인 경우에는 효율적인 구현이 필수적이다. 특히, 서포트벡터 (support vector)의 차원과 개수에 의해 결정되는 서포트벡터의 저장 공간의 크기는 일반적으로 임베디드 프로세서의 캐시 (cache)의 크기보다 훨씬 크므로 캐시에 존재하지 않는 서포트벡터를 메인 메모리로부터 읽어야 하는 경우가 많다. 메모리에서 데이터를 가져오는 데는 캐시나 레지스터와 비교했을 때 상대적으로 긴 시간과 많은 에너지가 소비되어 분류기의 실행시간과 에너지 소비를 증가시키는 요인이 된다. 본 논문에서는 분류기의 데이터 접근 양식을 보다 시간적 근접성을 가지게 변환하여 일단 프로세서 칩으로 불려진 데이터를 최대한 활용함으로써 메모리의 접근 횟수를 줄여 전체적인 서포트벡터의 실행시간의 단축시키는 기법을 제안한다. 실험을 통해 메모리로의 접근 회수의 감소와 이에 따른 실행시간 그리고 에너지 소비의 감소를 확인하였다.

비디오 영상에서 시공간적 문자영역 제거방법 (Spatiotemporal Removal of Text in Image Sequences)

  • 이창우;강현;정기철;김항준
    • 전자공학회논문지CI
    • /
    • 제41권2호
    • /
    • pp.113-130
    • /
    • 2004
  • 많은 시각적 정보를 포함한 비디오 데이터들의 자동화된 처리 기술 중, 비디오 데이터들의 시청자적인 정보를 보강시키고, 부가적인 정보를 첨가하기 위한 일환으로 자막을 삽입하는 경우가 많다. 이러한 자막은 때로 영상자료의 재사용성(reusability)을 저해하고, 원 영상을 훼손하는 경우가 발생한다. 본 논문에서는 영상의 재사용성을 높이고 원 영상 복원을 위해 Support Vector Machines(SVM)과 시공간적 영상복원 방법(spatiotemporal restoration)을 이용한 비디오 영상에서의 자동 문자 검출과 제거 방법을 제안한다. 연속적인 두 프레임 이상의 영상을 입력받아, 현재 프레임 영상에서 SVM을 이용하여 문자 영역을 검출한 다음, 검출된 문자 영역을 제거하고, 문자 영역에 의해 가려졌던 원 영상을 복원하기 위한 두 단계- 시간적 복원(temporal restoration)과 공간적 복원(spatial restoration)접근방법을 제안한다. 제안된 복원 방법은 글자 모션(text motion) 정보와 두 영상의 배경 차이(background difference)를 이용하여 영상을 그 특징에 따라 분류하고, 각 영상의 특징에 맞는 복원 방법을 적용한다. 제안된 방법은 다양한 종류의 영상에서 문자뿐만 아니라 관심의 대상이 되는 객체의 자동 검출 및 복원 등 다양한 응용분야를 포함한다.

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구 (Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data)

  • 윤희성;김용철;하규철;김규범
    • 지질공학
    • /
    • 제23권2호
    • /
    • pp.137-147
    • /
    • 2013
  • 지하수자원의 효율적인 관리를 위해 강우에 대한 지하수위 변화를 예측하는 것은 중요한 문제이다. 본 연구에서는 자료기반 학습 알고리즘인 인공신경망과 지지벡터기계를 이용하여 시계열 예측 모델을 만들고 이를 국가지하수관측망 중 가산, 신광, 청성 관측소 지하수위 변화 예측에 적용하였다. 모델의 입력 성분 구성 방법에 따라 네 가지 모형을 설정하고 각 관측소 및 모델 별 예측 결과를 비교 평가하였다. 강우 입력 모형의 경우 지하수위 감쇠 및 기저 변화 예측을 위해 큰 규모의 입력 성분 구성이 필요하지만 강우 및 지하수위 입력 모형은 보다 작은 규모의 입력 성분으로 효과적으로 지하수위 변화를 예측하는 것으로 나타났다. 강우 및 지하수위 입력 모형의 활용성 증대를 위해 고안된 반복 예측 모형의 경우 관측값과 예측값 사이에 0.75~0.95의 상관계수를 보여 적용 가능성이 큰 것으로 판단된다. 전체적으로 강우-지하수위 교차상관계수가 낮은 신광 관측소의 예측 오차가 크게 나타났고 ANN 모델에 비해 SVM의 예측력이 다소 높은 것으로 조사되었다. 또한 반복 예측 모형의 모델 파라미터 선정 과정에서 보정 단계 오차에 대한 예측 단계 오차의 비의 분포를 조사한 결과 SVM의 경우가 더 작게 나타나 SVM이 본 연구 자료에 대해 보다 안정적이고 효율적인 모델임을 평가하였다.