• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,260, Processing Time 0.026 seconds

Spatial Downscaling of Satellite-based Soil Moisture Using Support Vector Machine in Northeast Asia (기계학습을 활용한 동북아시아 지역 위성 토양수분 데이터 상세화 연구: AMSR2, ASCAT 데이터를 활용하여)

  • Choi, Min Ha;Kim, Seongkyun;Kim, Hyung Lok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.208-208
    • /
    • 2016
  • 수문순환과정의 시공간적 거동을 해석하고 이를 정량화 하는 것은 효율적인 수자원 관리 및 계획을 위해 반드시 선행되어야 하는 연구이다. 특히 토양수분은 물 에너지 순환에서 지표면과 대기 사이의 복잡한 관계를 이해하기 위한 중요한 수문인자로, 이를 정확하게 측정하기 위한 방법들이 다각도로 발전되어 왔다. 그 중 위성 데이터를 활용한 토양수분 산정은 미계측 지역의 토양수분을 지속적이고 광역적이게 관측할 수 있는 선진 기술로 각광받고 있다. 그러나 대부분의 위성 자료들이 가지고 있는 공간 해상도는 복잡한 지형 환경을 대상으로 한 지역의 원격 탐사로서는 국지적인 수문학적 현상들을 분석하는데 어려움을 가지고 있다. 특히 우리나라의 경우 국토의 70% 정도가 산지로 이루어져 있으며 경사도가 $5^{\circ}$ 이하의 평탄한 지역은 약 23%에 그치는 등 복잡한 식생 지형 환경을 가지고 있다. 따라서 인공위성의 해상도와 식생 투과도를 고려할 때 저 해상도의 위성 토양수분만으로는 우리나라와 같이 면적에 비해 복잡한 환경에 기반 한 수문학적 현상들을 충분히 분석하는데 한계점이 있다. 따라서 본 연구에서는 support vector machine (SVM) 기계학습을 활용하여 ASCAT과 AMSR2 위성 토양수분의 상세화를 수행하여 고해상도의 토양수분을 산정하였고, 이를 지점관측 자료와 비교해 상세화도 자료의 신뢰성을 평가하였다. 검증된 고해상도 토양수분 데이터는 향후 자연재해 분석에 있어 예측의 정확성을 높이고 수문순환 및 기후 모델링에 있어서 중요한 입력 인자로 활용될 것으로 기대된다.

  • PDF

New Temporal Features for Cardiac Disorder Classification by Heart Sound (심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • We improve the performance of cardiac disorder classification by adding new temporal features extracted from continuous heart sound signals. We add three kinds of novel temporal features to a conventional feature based on mel-frequency cepstral coefficients (MFCC): Heart sound envelope, murmur probabilities, and murmur amplitude variation. In cardiac disorder classification and detection experiments, we evaluate the contribution of the proposed features to classification accuracy and select proper temporal features using the sequential feature selection method. The selected features are shown to improve classification accuracy significantly and consistently for neural network-based pattern classifiers such as multi-layer perceptron (MLP), support vector machine (SVM), and extreme learning machine (ELM).

Adaptive Intrusion Detection System Based on SVM and Clustering (SVM과 클러스터링 기반 적응형 침입탐지 시스템)

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.237-242
    • /
    • 2003
  • In this paper, we propose a new adaptive intrusion detection algorithm based on clustering: Kernel-ART, which is composed of the on-line clustering algorithm, ART (adaptive resonance theory), combining with mercer-kernel and concept vector. Kernel-ART is not only satisfying all desirable characteristics in the context of clustering-based IDS but also alleviating drawbacks associated with the supervised learning IDS. It is able to detect various types of intrusions in real-time by means of generating clusters incrementally.

Word Sense Similarity Clustering Based on Vector Space Model and HAL (벡터 공간 모델과 HAL에 기초한 단어 의미 유사성 군집)

  • Kim, Dong-Sung
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.3
    • /
    • pp.295-322
    • /
    • 2012
  • In this paper, we cluster similar word senses applying vector space model and HAL (Hyperspace Analog to Language). HAL measures corelation among words through a certain size of context (Lund and Burgess 1996). The similarity measurement between a word pair is cosine similarity based on the vector space model, which reduces distortion of space between high frequency words and low frequency words (Salton et al. 1975, Widdows 2004). We use PCA (Principal Component Analysis) and SVD (Singular Value Decomposition) to reduce a large amount of dimensions caused by similarity matrix. For sense similarity clustering, we adopt supervised and non-supervised learning methods. For non-supervised method, we use clustering. For supervised method, we use SVM (Support Vector Machine), Naive Bayes Classifier, and Maximum Entropy Method.

  • PDF

SVM Classifier for the Detection of Ventricular Fibrillation (SVM 분류기를 통한 심실세동 검출)

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.27-34
    • /
    • 2005
  • Ventricular fibrillation(VF) is generally caused by chaotic behavior of electrical propagation in heart and may result in sudden cardiac death. In this study, we proposed a ventricular fibrillation detection algorithm based on support vector machine classifier, which could offer benefits to reduce the teaming costs as well as good classification performance. Before the extraction of input features, raw ECG signal was applied to preprocessing procedures, as like wavelet transform based bandpass filtering, R peak detection and segment assignment for feature extraction. We selected input features which of some are related to the rhythm information and of others are related to wavelet coefficients that could describe the morphology of ventricular fibrillation well. Parameters for SVM classifier, C and ${\alpha}$, were chosen as 10 and 1 respectively by trial and error experiments. Each average performance for normal sinus rhythm ventricular tachycardia and VF, was 98.39%, 96.92% and 99.88%. And, when the VF detection performance of SVM classifier was compared to that of multi-layer perceptron and fuzzy inference methods, it showed similar or higher values. Consequently, we could find that the proposed input features and SVM classifier would one of the most useful algorithm for VF detection.

Optimization of Uneven Margin SVM to Solve Class Imbalance in Bankruptcy Prediction (비대칭 마진 SVM 최적화 모델을 이용한 기업부실 예측모형의 범주 불균형 문제 해결)

  • Sung Yim Jo;Myoung Jong Kim
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.23-40
    • /
    • 2022
  • Although Support Vector Machine(SVM) has been used in various fields such as bankruptcy prediction model, the hyperplane learned by SVM in class imbalance problem can be severely skewed toward minority class and has a negative impact on performance because the area of majority class is expanded while the area of minority class is invaded. This study proposed optimized uneven margin SVM(OPT-UMSVM) combining threshold moving or post scaling method with UMSVM to cope with the limitation of the traditional even margin SVM(EMSVM) in class imbalance problem. OPT-UMSVM readjusted the skewed hyperplane to the majority class and had better generation ability than EMSVM improving the sensitivity of minority class and calculating the optimized performance. To validate OPT-UMSVM, 10-fold cross validations were performed on five sub-datasets with different imbalance ratio values. Empirical results showed two main findings. First, UMSVM had a weak effect on improving the performance of EMSVM in balanced datasets, but it greatly outperformed EMSVM in severely imbalanced datasets. Second, compared to EMSVM and conventional UMSVM, OPT-UMSVM had better performance in both balanced and imbalanced datasets and showed a significant difference performance especially in severely imbalanced datasets.

Development of Tongue Diagnosis System Using ASM and SVM (ASM과 SVM을 이용한 설진 시스템 개발)

  • Park, Jin-Woong;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.45-55
    • /
    • 2013
  • In this study, we propose a tongue diagnosis system which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue fur ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas and the distribution of tongue coating of six areas is examined by SVM. For SVM, we use a 3-dimensional vector calculated by PCA from a 12-dimensional vector consisting of RGB, HSV, Lab, and Luv. As a result, we stably detected the tongue area using ASM. Furthermore, we recognized that PCA and SVM helped to raise the ratio of tongue coating detection.

The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data (기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정)

  • Han, Daehyeon;Kim, Young Jun;Im, Jungho;Lee, Sanggyun;Lee, Yeonsu;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1261-1272
    • /
    • 2018
  • It is important to measure the Arctic surface air temperature because it plays a key-role in the exchange of energy between the ocean, sea ice, and the atmosphere. Although in-situ observations provide accurate measurements of air temperature, they are spatially limited to show the distribution of Arctic surface air temperature. In this study, we proposed machine learning-based models to estimate the Arctic surface air temperature in summer based on buoy data and Advanced Microwave Scanning Radiometer 2 (AMSR2)satellite data. Two machine learning approaches-random forest (RF) and support vector machine (SVM)-were used to estimate the air temperature twice a day according to AMSR2 observation time. Both RF and SVM showed $R^2$ of 0.84-0.88 and RMSE of $1.31-1.53^{\circ}C$. The results were compared to the surface air temperature and spatial distribution of the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF). They tended to underestimate the Barents Sea, the Kara Sea, and the Baffin Bay region where no IABP buoy observations exist. This study showed both possibility and limitations of the empirical estimation of Arctic surface temperature using AMSR2 data.

Upper Body Tracking Using Hierarchical Sample Propagation Method and Pose Recognition (계층적 샘플 생성 방법을 이용한 상체 추적과 포즈 인식)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.63-71
    • /
    • 2008
  • In this paper, we propose a color based hierarchically propagated particle filter that extends the color based particle filter into the articulated upper body tracking. Since color feature is robust to partial occlusion and rotation, the color based particle filter is widely used for object tracking. However, in articulated body tacking, it is not desirable to use the traditional particle filter because the dimension of the state vector usually is high and thus, many samples are required for robust hacking. To overcome this problem, we use a hierarchical tracking method for each body part based on the blown body part. By using a hierarchical tracking method, we can reduce the number of samples for robust tracking in the cluttered environment. Also for human pose recognition, we classify the human pose into eight categories using Support Vector Machine(SVM) according to the angle between upper- arm and fore-arm. Experimental results show that our proposed method is more efficient than the traditional particle filter.

Polychotomous Machines;

  • Koo, Ja-Yong;Park, Heon Jin;Choi, Daewoo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.225-232
    • /
    • 2003
  • The support vector machine (SVM) is becoming increasingly popular in classification. The import vector machine (IVM) has been introduced for its advantages over SMV. This paper tries to improve the IVM. The proposed method, which is referred to as the polychotomous machine (PM), uses the Newton-Raphson method to find estimates of coefficients, and the Rao and Wald tests, respectively, for addition and deletion of import points. Because the PM basically follows the same addition step and adopts the deletion step, it uses, typically, less import vectors than the IVM without loosing accuracy. Simulated and real data sets are used to illustrate the performance of the proposed method.