• 제목/요약/키워드: support vector machine(SVM)

검색결과 1,266건 처리시간 0.035초

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상에서의 얼굴 검출 (Face Detection for Interactive TV Control System in Near Infra-Red Images)

  • 원철호
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.388-392
    • /
    • 2011
  • In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.

모델 기반의 SVM을 이용한 시선 방향 추정 (Model based Gaze Direction Estimation Using Support Vector Machine)

  • 김종배;김항준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.121-122
    • /
    • 2007
  • 실내 환경에서 사람의 행동을 인식하는 시스템을 만들 때 사람의 의도를 파악하는 것은 중요한 정보가 될 수 있다. 사람의 시선방향은 의도를 파악하는데 있어서 깊은 관계가 있다. 본 논문에서는 실내 환경에서 사람의 시선 방향을 모델에 기반하여 추정하는 방법을 제안하였다. 머리 모델은 얼굴 영역과 머리카락 영역을 포함하는 두 개의 겹쳐진 타원으로 표현되고, 각 타원의 파라미터는 시선 방향을 추정하는 정보로 사용된다. 시선 방향은 SVM(Support Vector Machine) 알고리즘을 사용하여 8방향중 하나로 추정된다. 이미지에서 얼굴영역과 머리영역은 색상 정보에 의해 검출된다. 사무실 환경에서 시선방향을 다양하게 변화시켜 실험을 하였고, 이를 통해 성능 평가를 수행하였다.

  • PDF

감정자질과 커널모델을 이용한 영화평 평점 예측 시스템 (A Rating System on Movie Reviews using the Emotion Feature and Kernel Model)

  • 허향란;정형일;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.37-41
    • /
    • 2011
  • 본 논문에서는 최근 많은 관심을 받고 있는 Opinion Mining으로서 사용자들의 자연어 형태의 영화평 문장을 분석하여 자동으로 평점을 예측하는 시스템을 제안한다. 제안 시스템은 영화평 분석에 적합한 어휘 자질, 감정 자질, 가치 자질 및 기타 자질들을 추출하고, 10점 척도의 영화평의 평점을 10개의 범주로 가정하여, 커널모델인 다중 범주 Support Vector Machine (SVM) 모델을 이용하여 높은 성능으로 영화평의 평점을 범주 분류한다.

  • PDF

Integer DCT와 SVM을 이용한 실시간 얼굴 검출 (Real Time Face Detection Using Integer DCT and SVM)

  • 박현선;김경수;김희정;정병희;하명환;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2112-2115
    • /
    • 2003
  • The system for the real time face detection is described in this paper. For face verification, support vector machine (SVM) was utilized. Although SVM performs quit well, SVM has a drawback that the computational cost is high because all pixels in a mask are used as an input feature vector of SVM. To resolve this drawback, a method to reduce the dimension of feature vectors using the integer DCT was proposed. Also for the real time face detection applications, low-complexity methods for face candidate detection in a gray image were used. As a result, the accurate face detection was performed in real time.

  • PDF

SVM을 이용하여 HMM과 심잡음 점수를 결합한 심음 기반 심장질환 분류기 (Heart Sound-Based Cardiac Disorder Classifiers Using an SVM to Combine HMM and Murmur Scores)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제30권3호
    • /
    • pp.149-157
    • /
    • 2011
  • 본 논문은 support vector machine (SVM)을 사용하여 은닉 마코프 모델 (HMM)과 심잡음 존재 정보를 결합한 새로운 심장질환 분류 방법을 제안한다. 켑스트럼 특징과 HMM 비터비 (Viterbi) 알고리듬을 이용하여 입력 신호를 모든 심장질환 모델에 대하여 상태 단위로 분할하여 상태별로 로그우도 (점수)를 계산한다. 심잡음 신호의 시간적 위치 특성을 이용하기 위하여 입력신호를 두 개의 부대역으로 나누고 부대역별로 프레임 단위의 심잡음 점수를 계산한 다음, 비터비 알고리듬으로부터 구한 상태 분할 정보를 이용하여 상태단위의 심잡음 점수를 구한다. SVM은 모든 심장질환 종류에 대한 상태 단위의 HMM과 심잡음 점수를 입력으로 하여 최종적으로 심장질환을 판정한다. 심장질환 분류 실험결과, 제안한 방법은 기존의 켑스트럼 특징과 HMM 분류기를 이용한 방법에 비하여 20.4 %의 상대적 개선율을 보여준다.

양서류 울음 소리 식별을 위한 특징 벡터 및 인식 알고리즘 성능 분석 (Performance assessments of feature vectors and classification algorithms for amphibian sound classification)

  • 박상욱;고경득;고한석
    • 한국음향학회지
    • /
    • 제36권6호
    • /
    • pp.401-406
    • /
    • 2017
  • 본 논문에서는 양서류 울음소리를 통한 종 인식 시스템 개발을 위해, 음향 신호 분석에서 활용되는 주요 알고리즘의 인식 성능을 평가했다. 먼저, 멸종위기 종을 포함하여 총 9 종의 양서류를 선정하여, 각 종별 울음소리를 야생에서 녹음하여 실험 데이터를 구축했다. 성능평가를 위해, MFCC(Mel Frequency Cepstral Coefficient), RCGCC(Robust Compressive Gammachirp filterbank Cepstral Coefficient), SPCC(Subspace Projection Cepstral Coefficient)의 세 특징벡터와 GMM(Gaussian Mixture Model), SVM(Support Vector Machine), DBN-DNN(Deep Belief Network - Deep Neural Network)의 세 인식기가 고려됐다. 추가적으로, 화자 인식에 널리 사용되는 i-vector를 이용한 인식 실험도 수행했다. 인식 실험 결과, SPCC-SVM의 경우 98.81 %로 가장 높은 인식률을 확인 할 수 있었으며, 다른 알고리즘에서도 90 %에 가까운 인식률을 확인했다.

Support-vector-machine Based Sensorless Control of Permanent Magnet Synchronous Motor

  • Back, Woon-Jae;Han, Dong-Chang;Kim, Jong-Mu;Park, Jung-Il;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.149-152
    • /
    • 2004
  • Speed and torque control of PMSM(Permanent Magnet Synchronous Motor) are usually achieved by using position and speed sensors which require additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. In this paper, a novel speed sensorless control of a permanent magnet synchronous motor based on SVMR(Support Vector Machine Regression) is presented. The SVM regression method is an algorithm that estimates an unknown mapping between a system's input and outputs, from the available data or training data. Two well-known different voltage model is necessary to estimate the speed of a PMSM. The validity and the usefulness of proposed algorithm are thoroughly verified through numerical simulation.

  • PDF

서포트벡터기계를 이용한 VaR 모형의 결합 (Combination of Value-at-Risk Models with Support Vector Machine)

  • 김용태;심주용;이장택;황창하
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.791-801
    • /
    • 2009
  • VaR(Value-at-Risk)는 시장위험을 측정하기 위한 중요한 도구로 사용되고 있다. 그러나 적절한 VaR 모형의 선택에는 논란의 여지가 많다. 본 논문에서는 특정 모형을 선택하여 VaR 예측값을 구하는 대신 대표적으로 많이 사용되는 두개의 VaR 모형인 역사적 모의실험과 GARCH 모형의 예측값들을 서포트벡터기계 분위수 회귀모형을 이용하여 결합하는 방법을 제안한다.

Vertical Handoff Decision System based on Support Vector Machine

  • 오룡;유재학;김태섭;류승완
    • 한국통신학회논문지
    • /
    • 제36권7B호
    • /
    • pp.771-779
    • /
    • 2011
  • It is expected that many heterogeneous wireless systems, such as 3GPP LTE systems, WiMAX systems and WLAN systems, will coexist in the next generation wireless communication environments. Integrated radio resource management and seamless vertical handoff (VHO) should be supported to provide integrated communication services over multi-radio access networks. A new class of adaptive VHO system that views the handoff problem as a pattern recognition problem is proposed. In this paper, we propose a unified radio resource management (URRM) architecture and Support Vector Machine (SVM) based vertical handoff decision system. Extensive simulation studies show the proposed VHO algorithm outperforms RSS based VHO algorithms in terms of throughput and service cost.