• 제목/요약/키워드: support vector machine(SVM)

검색결과 1,266건 처리시간 0.031초

Estimation of various amounts of kaolinite on concrete alkali-silica reactions using different machine learning methods

  • Aflatoonian, Moein;Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.79-92
    • /
    • 2022
  • In this paper, the impact of a vernacular pozzolanic kaolinite mine on concrete alkali-silica reaction and strength has been evaluated. For making the samples, kaolinite powder with various levels has been used in the quality specification test of aggregates based on the ASTM C1260 standard in order to investigate the effect of kaolinite particles on reducing the reaction of the mortar bars. The compressive strength, X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) experiments have been performed on concrete specimens. The obtained results show that addition of kaolinite powder to concrete will cause a pozzolanic reaction and decrease the permeability of concrete samples comparing to the reference concrete specimen. Further, various machine learning methods have been used to predict ASR-induced expansion per different amounts of kaolinite. In the process of modeling methods, optimal method is considered to have the lowest mean square error (MSE) simultaneous to having the highest correlation coefficient (R). Therefore, to evaluate the efficiency of the proposed model, the results of the support vector machine (SVM) method were compared with the decision tree method, regression analysis and neural network algorithm. The results of comparison of forecasting tools showed that support vector machines have outperformed the results of other methods. Therefore, the support vector machine method can be mentioned as an effective approach to predict ASR-induced expansion.

Prediction of uplift capacity of suction caisson in clay using extreme learning machine

  • Muduli, Pradyut Kumar;Das, Sarat Kumar;Samui, Pijush;Sahoo, Rupashree
    • Ocean Systems Engineering
    • /
    • 제5권1호
    • /
    • pp.41-54
    • /
    • 2015
  • This study presents the development of predictive models for uplift capacity of suction caisson in clay using an artificial intelligence technique, extreme learning machine (ELM). Other artificial intelligence models like artificial neural network (ANN), support vector machine (SVM), relevance vector machine (RVM) models are also developed to compare the ELM model with above models and available numerical models in terms of different statistical criteria. A ranking system is presented to evaluate present models in identifying the 'best' model. Sensitivity analyses are made to identify important inputs contributing to the developed models.

PCA-SVM을 이용한 Human Detection을 위한 HOG-Family 특징 비교 (Evaluation of HOG-Family Features for Human Detection using PCA-SVM)

  • ;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.504-509
    • /
    • 2008
  • Support Vector Machine (SVM) is one of powerful learning machine and has been applied to varying task with generally acceptable performance. The success of SVM for classification tasks in one domain is affected by features which represent the instance of specific class. Given the representative and discriminative features, SVM learning will give good generalization and consequently we can obtain good classifier. In this paper, we will assess the problem of feature choices for human detection tasks and measure the performance of each feature. Here we will consider HOG-family feature. As a natural extension of SVM, we combine SVM with Principal Component Analysis (PCA) to reduce dimension of features while retaining most of discriminative feature vectors.

  • PDF

Support Vector Machine Based Diagnostic System for Thyroid Cancer using Statistical Texture Features

  • Gopinath, B.;Shanthi, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.97-102
    • /
    • 2013
  • Objective: The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). Materials and Methods: A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. Results: The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. Conclusion: The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.59-66
    • /
    • 2022
  • 본 논문에서는 음성 데이터에서 특징벡터를 추출한 후 이를 분석하여 화자의 성별을 분류하는 연구를 진행하였다. 본 연구는 고객이 전화 등 음성을 통해 서비스를 요청할 시 요청한 고객의 성별을 자동으로 인식함으로써 직접 듣고 분류하지 않아도 되는 편의성을 제공한다. 학습된 모델을 활용하여 성별을 분류한 후 성별마다 요청 빈도가 높은 서비스를 분석하여 고객 맞춤형 추천 서비스를 제공하는 데에 유용하게 활용할 수 있다. 본 연구는 공백을 제거한 남성 및 여성의 음성 데이터를 기반으로 각각의 데이터에서 MFCC를 통해 특징벡터를 추출한 후 SVM 모델을 활용하여 기계학습을 진행하였다. 학습한 모델을 활용하여 음성 데이터의 성별을 분류한 결과 94%의 성별인식률이 도출되었다.

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.1-11
    • /
    • 2023
  • 유방암은 전 세계적으로 여성들 대다수에게 가장 두려워하는 질환이다. 오늘날 데이터의 증가와 컴퓨팅 기술의 향상으로 머신러닝(machine learning)의 효율성이 증대되어 암 검출 및 진단 등에 중요한 역할을 하고 있다. 딥러닝(deep learning)은 인공신경망(artificial neural network, ANN)을 기반으로 하는 머신러닝 기술의 한 분야로 최근 여러 분야에서 성능이 급속도로 개선되어 활용 범위가 확대되고 있다. 본 연구에서는 유방암 분류를 위해 전이학습(transfer learning) 기반 DNN(Deep Neural Network)과 SVM(support vector machine)의 구조를 결합한 DNN-SVM Hybrid 모형을 제안한다. 전이학습 기반 제안된 모형은 적은 학습 데이터에도 효과적이고, 학습 속도도 빠르며, 단일모형, 즉 DNN과 SVM이 가지는 장점을 모두 활용 가능토록 결합함으로써 모형 성능이 개선되었다. 제안된 DNN-SVM Hybrid 모형의 성능평가를 위해 UCI 머신러닝 저장소에서 제공하는 WOBC와 WDBC 유방암 자료를 가지고 성능실험 결과, 제안된 모형은 여러 가지 성능 척도 면에서 단일모형인 로지스틱회귀 모형, DNN, SVM 그리고 앙상블 모형인 랜덤 포레스트보다 우수함을 보였다.

SVM-인공신경망 알고리즘을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구 (Defect Diagnostics of Gas Turbine with Altitude Variation Using Hybrid SVM-Artificial Neural Network)

  • 이상명;최원준;노태성;최동환
    • 한국추진공학회지
    • /
    • 제11권1호
    • /
    • pp.43-50
    • /
    • 2007
  • 본 논문에서는 고도 변화만을 고려한 탈설계 영역에서 항공기용 터보 축 엔진의 결함 진단을 위해 지지 벡터 장치(SVM)과 인공신경망(ANN)을 Hybrid로 사용한 분할 학습 알고리즘을 사용하였다. 지상 정지 상태에서보다 학습 데이터와 테스트 데이터 수가 크게 증가하지만, 분할 학습 알고리즘을 이용한 가스터빈 엔진의 결함 진단이 고도 변화를 고려한 탈설계 영역에서도 높은 결함 예측 정확성을 가짐을 확인하였다.

Application of SA-SVM Incremental Algorithm in GIS PD Pattern Recognition

  • Tang, Ju;Zhuo, Ran;Wang, DiBo;Wu, JianRong;Zhang, XiaoXing
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.192-199
    • /
    • 2016
  • With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. The UHF signal and pulse current signal of four kinds of typical artificial defect models in gas insulated switchgear (GIS) are obtained simultaneously by experiment. The relationship map of ultra-high frequency (UHF) cumulative energy and its corresponding apparent discharge of four kinds of typical artificial defect models are plotted. UHF cumulative energy and its corresponding apparent discharge are used as inputs. The support vector machine (SVM) incremental method is constructed. Examples show that the PD SVM incremental method based on simulated annealing (SA) effectively speeds up the data update rate and improves the adaptability of the classifier compared with the original method, in that the total sample is constituted by the old and new data. The PD SVM incremental method is a better pattern recognition technology for PD on-line monitoring.

커널 이완 절차에 의한 커널 공간의 저밀도 표현 학습 (Spare Representation Learning of Kernel Space Using the Kernel Relaxation Procedure)

  • 류재홍;정종철
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.817-821
    • /
    • 2001
  • 본 논문은 분류 문제의 훈련 패턴으로부터 형성되는 커널 공간의 저밀도 표현을 가능하게 하는 커널 방법에 대한 새로운 학습방법론을 제안한다. 선형 판별 함수에 대한 기존의 학습법 중에서 이완 절차가 SVM(Support Vector Machine) 분류기와 동등하게 선형분리 가능 패턴분류 문제의 최대 마진 분리 초평면을 얻을 수 있다. 기존의 이완 절차는 지원 백터에 대한 필요 조건을 만족한다. 본 논문에서는 학습 중 지원 벡터를 확인하기 위한 충분 조건을 제시한다. 순차적 학습을 위하여 기존의 SVM을 확장하고 커널 판별함수를 정의한 후에 체계적인 학습방법을 제시한다. 실험 결과는 새 방법이 기존의 방법과 동등하거나 우수한 분류 성능을 갖고있음을 보여준다.

  • PDF

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.