• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.031 seconds

Solder Joint Inspection System using Support Vector Machine and Circular Illumination (Support Vector Machine과 원형 조명을 이용한 납땜 검사 시스템)

  • 심광재;윤태수;김항준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.494-496
    • /
    • 1999
  • 본 논문에서는 SV(Support Vector Machine)과 3단의 칼라 원형 조명장치를 이용한 효율적인 납땜 검사 시스템을 제안한다. 원형 조명장치를 이용하여 납땜부의 표면의 경사도에 의해서 생기는 명암의 분포로부터 납땜 검사를 위한 특징값을 추출한다. SVM은 추출된 특징값을 이용하여 납땜 영상을 정의된 타입중의 하나로 분류한다. SVM은 두 부류의 경계를 최대로 하는 최적경계를 학습하므로 납땜 영상과 같이 각 부류의 경계가 모호한 문제에 대해서 적은 수의 학습 데이터를 사용해도 우수한 성능을 나타낸다. 제안된 시스템은 현산업에서 사용되고 있는 다양한 표면실장형 부품에 대해서 적용해 본 결과 적은 학습 데이터에도 효율적으로 적용될 수 있음을 보였다.

  • PDF

Automatic Extraction of Semantic Relationships from Images Using Ontologies and SVM Classifiers (SVM과 온톨로지를 이용한 이미지 의미 관계 자동 추출 기법)

  • Jeong, Jin-Woo;Joo, Young-Do;Lee, Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.13-18
    • /
    • 2007
  • 효과적인 이미지 검색을 위하여, 이미지의 저수준 시각 정보로부터 고수준 의미 정보를 추출하는 기술에 관한 많은 연구가 이루어지고 있다. 특히 최근에는 Support Vector Machine과 같은 기계 학습 기법을 이용한 이미지 어노테이션 시스템의 개발이 활발히 진행중이이다. 그러나 기존의 연구들은 단편적인 이미지 정보만을 추출함에도 불구하고, 그 성능이 여전히 만족스럽지 못하다. 본 논문에서는 Support Vector Machine과 온톨로지를 이용하여 이미지의 다양한 정보를 효과적으로 추출 및 기술할 수 있는 시스템을 제안한다. 특히 온톨로지는 특정 도메인의 상세한 지식 표현과 추론을 위한 지식베이스로서, 본 논문에서는 Support Vector Machine을 이용하여 이미지 안에 존재하는 객체들의 컨셉을 판별하고 이미지 어노테이션 온톨로지와 생태계 온톨로지를 이용하여 공간 관계, 천적 관계와 같은 객체간 의미 관계를 자동적 자동적으로 추출하는 방법을 제안한다.

  • PDF

Solder Joint Inspection System using Support Vector Machine and Circular Illumination (Support Vector Machine 과 원형 조명을 이용한 납땜 검사 시스템)

  • 심광재;윤태수;김항준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.607-609
    • /
    • 2000
  • 본 논문에서는 SVM(Support Vector Machine)과 3단의 칼라 원형 조명장치를 이용한 효율적인 납땜 검사시스템을 제안한다. 원형 조명장치를 이용하여 납땜부의 표면의 경사도에 의해서 생기는 명암의 분포로부터 납땜 검사를 위한 특징값을 추출한다. SVM은 추출된 특징값을 이용하여 납땜 영상을 정의된 타입중의 하나로 분류한다. SBM은 두 부류의경계를 최대로 하는 최적경계를 학습하므로 납땜 영상과 같이 각 부류의 경계가 모호한 문제에 대해서 적은 수의 학습 데이터를 사용해도 우수한 성능을 나타낸다. 제안된 시스템은 현산업에서 사용되고 있는 다양한 표면실장형 부품에 대해서 적용해 본 결과 적은 학습 데이터에도 효율적으로 적용될 수 있음을 보였다.

  • PDF

Support Vector Machine Learning for Region-Based Image Retrieval with Relevance Feedback

  • Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.700-702
    • /
    • 2007
  • We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.

  • PDF

Recognition Of Chinese Named-Entity Using Support Vector Machine (SVM을 이용한 중국어 개체명 식별)

  • Jin, Feng;Na, Seung-Hoon;Kang, In-Su;Li, Jin-Ji;Kim, Dong-Il;Lee, Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.934-936
    • /
    • 2004
  • 본문에서는 최근 들어 각광을 받고 있는 패턴인식 방법론인 Support Vector Machine을 이용하여 중국어 개체명을 식별하는 방법을 제안하고자 한다. SVM(support vector machine)은 입력 자질이 많을 경우에도 안정적인 성능을 나타내고 보편적으로 적용할 수 있는 모델을 개발할 수 있는 장점이 있다. 실험에서 어휘. 품사, 의미부류 등 많은 수의 자질을 이용하였다. 실험결과는 본문에서 제안한 방법이 튜닝을 거치지 않아도 좋은 성능을 나타낼 수 있고, 수행 속도도 만족스럽다는 것을 보여주었다.

  • PDF

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.

EEG Signal Classification based on SVM Algorithm (SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류)

  • Rhee, Sang-Won;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

A Study on Robustness Improvement of $H_{\infty}$ Control Using SVM (SVM을 이용한 $H_{\infty}$ 제어의 강인성 향상에 관한 연구)

  • Kim, Min-Chan;Yoon, Seong-Sik;Park, Seung-Kyu;Ahn, Ho-Gyun;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.276-281
    • /
    • 2008
  • This paper proposes a new sliding surface which can have the same dynamics of nominal system based on SVM(Support Vector Machines). The conventional sliding mode control can not have the properties of $H_{\infty}$ controller because its sliding surface has lower order dynamics than the original system. The additional states must be used to solve this problem. However, The sliding surface of this paper can have the dynamics of $H_{\infty}$ control system by using support vector machines without defining any additional dynamic state. By using SVM, the property of $H_{\infty}$ control system can be estimated as a relationship between the states. With this relationship, a new sliding surface can be designed and have $H_{\infty}$ control system properties. As a result, in spite of the parameter uncertainty, the proposed controller can have the same dynamic of nominal system controlled by $H_{\infty}$ controller.