• 제목/요약/키워드: support vector machine(SVM)

검색결과 1,266건 처리시간 0.035초

Support Vector Machines을 이용한 다중 클래스 문제 해결 (Solving Multi-class Problem using Support Vector Machines)

  • 고재필
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1260-1270
    • /
    • 2005
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로 Support Vector Machines (SVM)이 주목 받고 있다. SVM은 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나. SVM은 이진 분류기이므로 일반적인 다중 클래스 문제에 곧바로 적용할 수 없다. SVM을 다중 클래스 문제의 하나인 얼굴인식에 도입하기 위한 방법으로는, One-Per-Class와 All-Pairs가 대표적이다. 상기 두 방법은 다중 클래스 문제를 여러 개의 이진 클래스 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 방법에 속한다. 본 논문에서는 이진 분류기인 SVM의 다중 클래스 분류기 확장 방안으로 출력코딩 방법론을 설명한다. 또한 출력코딩 방법론의 대표적인 이론적 기반인 ECOC(Ewor-Correcting Output Codes)를 근간으로 하는 새로운 출력코딩 방법들을 제안하고, 얼굴인식 실험을 통해 SVM을 기반 분류기로 사용할 경우의, 출력코딩 방법의 특성을 비교$\cdot$분석한다.

Support Vector Machine Model to Select Exterior Materials

  • Kim, Sang-Yong
    • 한국건축시공학회지
    • /
    • 제11권3호
    • /
    • pp.238-246
    • /
    • 2011
  • Choosing the best-performance materials is a crucial task for the successful completion of a project in the construction field. In general, the process of material selection is performed through the use of information by a highly experienced expert and the purchasing agent, without the assistance of logical decision-making techniques. For this reason, the construction field has considered various artificial intelligence (AI) techniques to support decision systems as their own selection method. This study proposes the application of a systematic and efficient support vector machine (SVM) model to select optimal exterior materials. The dataset of the study is 120 completed construction projects in South Korea. A total of 8 input determinants were identified and verified from the literature review and interviews with experts. Using data classification and normalization, these 120 sets were divided into 3 groups, and then 5 binary classification models were constructed in a one-against-all (OAA) multi classification method. The SVM model, based on the kernel radical basis function, yielded a prediction accuracy rate of 87.5%. This study indicates that the SVM model appears to be feasible as a decision support system for selecting an optimal construction method.

함수 근사를 위한 점증적 서포트 벡터 학습 방법 (Incremental Support Vector Learning Method for Function Approximation)

  • 임채환;박주영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.135-138
    • /
    • 2002
  • This paper addresses incremental learning method for regression. SVM(support vector machine) is a recently proposed learning method. In general training a support vector machine requires solving a QP (quadratic programing) problem. For very large dataset or incremental dataset, solving QP problems may be inconvenient. So this paper presents an incremental support vector learning method for function approximation problems.

  • PDF

APPLICATION OF SUPPORT VECTOR MACHINE TO THE PREDICTION OF GEO-EFFECTIVE HALO CMES

  • Choi, Seong-Hwan;Moon, Yong-Jae;Vien, Ngo Anh;Park, Young-Deuk
    • 천문학회지
    • /
    • 제45권2호
    • /
    • pp.31-38
    • /
    • 2012
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

교차검증과 SVM을 이용한 도시침수 위험기준 추정 알고리즘 적용성 검토 (Applicability study on urban flooding risk criteria estimation algorithm using cross-validation and SVM)

  • 이한승;조재웅;강호선;황정근
    • 한국수자원학회논문집
    • /
    • 제52권12호
    • /
    • pp.963-973
    • /
    • 2019
  • 본 연구는 도시침수 위험기준이 산정되지 않은 지역의 예·경보 기준을 예측하기 위해 유역특성 자료와 피해이력 기반으로 산정된 한계강우량을 활용하여 도시침수 위험기준을 추정하는 모델을 검토하였다. 위험기준 추정모델은 머신러닝 알고리즘의 하나인 Support Vector Machine을 이용하여 설계하였으며, 학습자료는 지역별 한계강우량과 유역특성으로 구성하였다. 학습자료는 정규화 한 후 SVM 알고리즘에 적용하였으며, SVM에 적용시 Leave-One-Out과 K-fold 교차검증 알고리즘을 이용하여 절대평균오차와 표준편차를 계산한 후 모델의 성능을 평가하였다. Leave-One-Out의 경우 표준편차가 작은 모델이 최적모델로 선정되었으며, K-fold의 경우 fold의 개수가 적은 모델이 선정되었다. 선정된 모델의 지속시간별 평균 정확도는 80% 이상으로 나타나 침수 위험기준 추정을 위해 SVM을 활용가능 할 것으로 판단된다.

Combining genetic algorithms and support vector machines for bankruptcy prediction

  • Min, Sung-Hwan;Lee, Ju-Min;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.179-188
    • /
    • 2004
  • Bankruptcy prediction is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. Recently, support vector machine (SVM) has been applied to the problem of bankruptcy prediction. The SVM-based method has been compared with other methods such as neural network, logistic regression and has shown good results. Genetic algorithm (GA) has been increasingly applied in conjunction with other AI techniques such as neural network, CBR. However, few studies have dealt with integration of GA and SVM, though there is a great potential for useful applications in this area. This study proposes the methods for improving SVM performance in two aspects: feature subset selection and parameter optimization. GA is used to optimize both feature subset and parameters of SVM simultaneously for bankruptcy prediction.

  • PDF

카이 제곱 통계량과 지지벡터기계를 이용한 자동 스팸 메일 분류기 (An Automatic Spam e-mail Filter System Using χ2 Statistics and Support Vector Machines)

  • 이성욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.592-595
    • /
    • 2009
  • 우리는 지지벡터기계를 이용하여 스팸 이메일을 자동으로 분류하는 시스템을 제안한다. 단어의 어휘 정보와 품사 태그 정보를 지지벡터기계의 자질로 사용한다. 우리는 카이 제곱 통계량을 이용하여 유용한 자질을 선택한 후 각각의 자질을 문서 빈도(TF)와 역문헌빈도(IDF) 값으로 표현하였다. 자질들을 이용하여 SVM을 학습한 후, SVM 분류기는 각각의 이메일의 스팸 유무를 결정한다. 실험 결과, 웹메일 시스템에서 수집한 이메일 데이터에 대해 약 82.7%의 정확률을 얻었다.

  • PDF

Support Vector Machine 기반 생체인식 전용 VLSI 구조 (VLSI Architecture using Support Vector Machine-based Biometric Authentication)

  • 반성범;정용화;정교일
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.417-420
    • /
    • 2002
  • In this paper, we propose a VLSI architecture for computation of the SVM(Support Vector Machine) that has become established as a powerful technique for solving a variety of classification, regression, and so on. When we compare the proposed systolic arrays with the conventional method, our architecture exhibits a lot of advantages in terms of latency and throughput rate.

  • PDF

Power System Voltage Stability Classification Using Interior Point Method Based Support Vector Machine(IPMSVM)

  • Song, Hwa-Chang;Dosano, Rodel D.;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.238-243
    • /
    • 2009
  • This paper present same thodology for the classification of power system voltage stability, the trajectory of which to instability is monotonic, using an interior point method based support vector machine(IPMSVM). The SVM based voltage stability classifier canp rovide real-time stability identification only using the local measurement data, without the topological information conventionally used.

Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법 (Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine)

  • 이한수;김은경;김성신
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.665-670
    • /
    • 2014
  • SVM은 학습 데이터를 두 개의 집단으로 분리시키는 최적의 초평면을 찾는 이진 분류기로서 우수한 성능 때문에 다양한 분야에서 귀납 추론, 이진 분류, 예측 등을 목적으로 사용되는 알고리즘이다. 또한 대표적인 블랙박스 모델 중 하나이기 때문에 학습 후 생성되는 SVM의 해석에 대한 연구도 활발히 진행되고 있다. 본 논문에서는 SVM 알고리즘을 이용하여 기상 레이더의 데이터 내에 비교적 높은 빈도로 발생하여 기상 예보의 정확도를 감소시키는 비강수에코 중 하나인 선에코를 자동으로 탐지하는 방법에 대한 연구를 수행하였다. 학습 데이터로는 평균 반사도, 크기, 발생 형태, 중심 고도 등과 같은 특성을 활용하였는데, 이는 기상 레이더 데이터에 저장된 다양한 데이터 중 반사도 값을 선택한 후 클러스터링 기법을 통해 추출한 것이다. 이와 같이 학습된 SVM 분류기를 실제 사례를 바탕으로 하여 검증하였으며, Decision Tree 알고리즘을 적용하여 생성한 분류기의 해석을 수행하였다.