• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.032 seconds

Dynamic Web Information Predictive System Using Ensemble Support Vector Machine (앙상블 SVM을 이용한 동적 웹 정보 예측 시스템)

  • Park, Chang-Hee;Yoon, Kyung-Bae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.465-470
    • /
    • 2004
  • Web Information Predictive Systems have the restriction such as they need users profiles and visible feedback information for obtaining the necessary information. For overcoming this restrict, this study designed and implemented Dynamic Web Information Predictive System using Ensemble Support Vector Machine to be able to predict the web information and provide the relevant information every user needs most by click stream data and user feedback information, which have some clues based on the data. The result of performance test using Dynamic Web Information Predictive System using Ensemble Support Vector Machine against the existing Web Information Predictive System has preyed that this study s method is an excellence solution.

The Study of Support Vector Machine-based HOG (Histogram of Oriented Gradients) Feature Vector for Recognition by Numerical Sign Language (숫자 수화 인식을 위한 서포트 벡터 머신 기반의 HOG(Histogram of Oriented Gradients) 특징 벡터 연구)

  • Lee, SeungHwan;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.271-272
    • /
    • 2019
  • 현재 4차 산업혁명으로 인해 많은 이들의 삶의 질이 이전보다 개선되었음에도 불구하고, 소외된 계층을 위한 개발은 타 분야에 비해서 더뎌지고 있는 실정이다. 현대의 청각 장애인과 언어 장애인들은 시각 언어인 수화를 이용하여 의사소통을 한다. 그러나 수화는 진입 장벽이 높기 때문에, 이를 사용하지 않는 사람들은 청각 장애인 및 언어 장애인과 의사소통을 하는데 어려움을 겪는다. 본 논문은 이러한 불편함을 줄이기 위해 서포트 벡터 머신(Support Vector Machine, SVM) 기반의 HOG(Histogram of Oriented Gradients) 특징 벡터를 이용하여 수화의 기본인 숫자를 분류할 수 있는 시스템을 구현하여 수화를 번역할 수 있는 가능성을 제안한다.

  • PDF

Prediction of Chronic Hepatitis Susceptibility using Single Nucleotide Polymorphism Data and Support Vector Machine (Single Nucleotide Polymorphism(SNP) 데이타와 Support Vector Machine(SVM)을 이용한 만성 간염 감수성 예측)

  • Kim, Dong-Hoi;Uhmn, Saang-Yong;Hahm, Ki-Baik;Kim, Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.7
    • /
    • pp.276-281
    • /
    • 2007
  • In this paper, we use Support Vector Machine to predict the susceptibility of chronic hepatitis from single nucleotide polymorphism data. Our data set consists of SNP data for 328 patients based on 28 SNPs and patients classes(chronic hepatitis, healthy). We use leave-one-out cross validation method for estimation of the accuracy. The experimental results show that SVM with SNP is capable of classifying the SNP data successfully for chronic hepatitis susceptibility with accuracy value of 67.1%. The accuracy of all SNPs with health related feature(sex, age) is improved more than 7%(accuracy 74.9%). This result shows that the accuracy of predicting susceptibility can be improved with health related features. With more SNPs and other health related features, SVM prediction of SNP data is a potential tool for chronic hepatitis susceptibility.

Mixed effects least squares support vector machine for survival data analysis (생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계)

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.739-748
    • /
    • 2012
  • In this paper we propose a mixed effects least squares support vector machine (LS-SVM) for the censored data which are observed from different groups. We use weights by which the randomly right censoring is taken into account in the nonlinear regression. The weights are formed with Kaplan-Meier estimates of censoring distribution. In the proposed model a random effects term representing inter-group variation is included. Furthermore generalized cross validation function is proposed for the selection of the optimal values of hyper-parameters. Experimental results are then presented which indicate the performance of the proposed LS-SVM by comparing with a standard LS-SVM for the censored data.

Support Vector Machine based Cluster Merging (Support Vector Machines 기반의 클러스터 결합 기법)

  • Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.369-374
    • /
    • 2004
  • A cluster merging algorithm that merges convex clusters resulted by the Fuzzy Convex Clustering(FCC) method into non-convex clusters was proposed. This was achieved by proposing a fast and reliable distance measure between two convex clusters using Support Vector Machines(SVM) to improve accuracy and speed over other existing conventional methods. In doing so, it was possible to reduce cluster number without losing its representation of the data. In this paper, results for several data sets are given to show the validity of our distance measure and algorithm.

Discriminative Weight Training for Gender Identification (변별적 가중치 학습을 적용한 성별인식 알고리즘)

  • Kang, Sang-Ick;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.252-255
    • /
    • 2008
  • In this paper, we apply a discriminative weight training to a support vector machine (SVM) based gender identification. In our approach, the gender decision rule is expressed as the SVM of optimally weighted mel-frequency cepstral coefficients (MFCC) based on a minimum classification error (MCE) method which is different from the previous works in that different weights are assigned to each MFCC filter bank which is considered more realistic. According to the experimental results, the proposed approach is found to be effective for gender identification using SVM.

Multi-pattern Classification Using Kernel Bagging-based Import Vector Machine (커널 Bagging기반의 Import Vector Machine을 이용한 다중 패턴 분류)

  • 최준혁;김대수;임기욱
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.275-278
    • /
    • 2002
  • Vapnik이 제안한 Support Vector Machine은 두 개의 부류를 갖는 데이터에 대한 분류에는 매우 좋은 성능을 보인다는 점은 이미 잘 알려져 있다. 하지만 부류의 개수가 3개 이상인 다중 패턴을 갖는 데이터에 대한 분류에는 SVM을 적용하기가 쉽지 않다. Support Vector Machine의 이러한 문제점을 해결하기 위하여 Zhu는 3개 이상의 부류를 갖는 데이터의 패턴 분류를 위하여 Import Vector Machine을 제안하였다. 이 모형은 Support Vector Machine을 이용하여 해결하기 어려운 다중 패턴 분류를 가능케 한다. Import Vector Machine은 커널 로지스틱 기반의 함수만을 사용하지만 본 논문에서는 다수의 커널 함수를 적용하여 가장 성능이 우수한 커널 함수를 찾아내어 최종 분류를 수행하게되는 bagging 기법을 적용하였다 제안하는 방법이 기존의 방법에 비해, 더욱 정확한 분류를 수행함을 실험 결과를 통해 확인한다.

Prediction of replacement period of shield TBM disc cutter using SVM (SVM 기법을 이용한 쉴드 TBM 디스크 커터 교환 주기 예측)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.641-656
    • /
    • 2019
  • In this study, a machine learning method was proposed to use in predicting optimal replacement period of shield TBM (Tunnel Boring Machine) disc cutter. To do this, a large dataset of ground condition, disc cutter replacement records and TBM excavation-related data, collected from a shield TBM tunnel site in Korea, was built and they were used to construct a disc cutter replacement period prediction model using a machine learning algorithm, SVM (Support Vector Machine) and to assess the performance of the model. The results showed that the performance of RBF (Radial Basis Function) SVM is the best among a total of three SVM classification functions (80% accuracy and 10% error rate on average). When compared between ground types, the more disc cutter replacement data existed, the better prediction results were obtained. From this results, it is expected that machine learning methods become very popularly used in practice in near future as more data is accumulated and the machine learning models continue to be fine-tuned.

Sensitivity analysis of the influencing factors of slope stability based on LS-SVM

  • Xu, Juncai;Ren, Qingwen;Shen, Zhenzhong
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.447-458
    • /
    • 2017
  • This study proposes a sensitivity analysis method for slope stability based on the least squares support vector machine (LS-SVM) to examine the influencing factors of slope stability. The method uses LS-SVM as an algorithm for machine learning. An appropriate training dataset is established according to the slope characteristics, and a testing dataset is designed orthogonally. Results of the testing data in the experiment design are calculated after training using the LS-SVM model. The sensitivity of the slope stability of each factor is examined via gray correlation analysis. The results are consistent with those of the traditional Bishop analysis and can be used as a reference for optimizing slope design.

Prediction Intervals for LS-SVM Regression using the Bootstrap

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.337-343
    • /
    • 2003
  • In this paper we present the prediction interval estimation method using bootstrap method for least squares support vector machine(LS-SVM) regression, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. The bootstrap method is applied to generate the bootstrap sample for estimation of the covariance of the regression parameters consisting of the optimal bias and Lagrange multipliers. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF