• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.034 seconds

The Study of Bio Emotion Cognition follow Stress Index Number by Multiplex SVM Algorithm (다중 SVM 알고리즘을 이용한 스트레스 지수에 따른 생체 감성 인식에 관한 연구)

  • Kim, Tae-Yeun;Seo, Dae-Woong;Bae, Sang-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, it's a system which recognize the user's emotions after obtaining the biological informations(pulse sensor, blood pressure sensor, blood sugar sensor etc.) about user's bio informations through wireless sensors in accordance of previously collected informations about user's stress index and classification the Colors & Music. This system collects the inputs, saves in the database and finally, classifies emotions according to the stress quotient by using multiple SVM(Support Vector Machine) algorithm. The experiment of multiple SVM algorithm was conducted by using 2,000 data sets. The experiment has approximately 87.7% accuracy.

A Study on Low Power Design of SVM Algorithm for IoT Environment (IoT 환경을 위한 SVM 알고리즘 저전력화 방안 연구)

  • Song, Jun-Seok;Kim, Sang-Young;Song, Byung-Hoo;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.73-74
    • /
    • 2017
  • SVM(Support Vector Machine) 알고리즘은 대표적인 기계 학습 분류 알고리즘으로 감정 분석, 제스처 인식 등 다양한 분야의 문제를 해결하기 위해 사용되고 있다. SVM 알고리즘은 분리경계면(Hyper-Plane) 또는 분리경계면 집합 중 지지벡터(Support Vector)라 불리는 특정한 점들로 이루어진 두 그룹 간의 거리 차이(Margin)를 최대로 하는 분리경계면을 이용하여 데이터를 분류하는 알고리즘이다. 높은 정확도를 제공하지만 처리 속도가 느리며 학습을 위해 대량의 데이터 및 메모리가 필요하기 때문에 자원이 제한적인 IoT 환경에서 사용이 어렵다. 본 논문에서는 자원이 제한된 IoT 노드를 기반으로 효율적으로 데이터를 학습하기 위해 K-means 알고리즘을 이용하여 SVM 알고리즘의 저전력화 방안을 연구한다.

  • PDF

FACE DETECTION USING SKIN-COLOR MODEL AND SUPPORT VECTOR MACHINE

  • Seld, Yoko;Yuyama, Ichiro;Hasegawa, Hiroshi;Watanabe, Yu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.592-595
    • /
    • 2009
  • In this paper, we propose a face detection technique for still pictures which sequentially uses a skin-color model and a support vector machine (SVM). SVM is a learning algorithm for solving the classification problem. Some studies on face detection have reported superior results of SVM over neural networks. The SVM method searches for a face in a picture while changing the size of the window. The detection accuracy and the processing time of SVM vary largely depending on the complexity of the background of the picture or the size of the face. Therefore, we apply a face candidate area detection method using a skin-color model as a preprocessing technique. We compared the method using SVM alone with that of the proposed method in respect to face detection accuracy and processing time. As a result, the proposed method showed improved processing time while maintaining a high recognition rate.

  • PDF

Performance comparison of SVM and ANN models for solar energy prediction (태양광 에너지 예측을 위한 SVM 및 ANN 모델의 성능 비교)

  • Jung, Wonseok;Jeong, Young-Hwa;Park, Moon-Ghu;Lee, Chang-Kyo;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.626-628
    • /
    • 2018
  • In this paper, we compare the performances of SVM (Support Vector Machine) and ANN (Artificial Neural Network) machine learning models for predicting solar energy by using meteorological data. Two machine learning models were built by using fifteen kinds of weather data such as long and short wave radiation average, precipitation and temperature. Then the RBF (Radial Basis Function) parameters in the SVM model and the number of hidden layers/nodes and the regularization parameter in the ANN model were found by experimental studies. MAPE (Mean Absolute Percentage Error) and MAE (Mean Absolute Error) were considered as metrics for evaluating the performances of the SVM and ANN models. Sjoem Simulation results showed that the SVM model achieved the performances of MAPE=21.11 and MAE=2281417.65, and the ANN model did the performances of MAPE=19.54 and MAE=2155345.10776.

  • PDF

Voice Activity Detection Based on SVM Classifier Using Likelihood Ratio Feature Vector (우도비 특징 벡터를 이용한 SVM 기반의 음성 검출기)

  • Jo, Q-Haing;Kang, Sang-Ki;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.397-402
    • /
    • 2007
  • In this paper, we apply a support vector machine(SVM) that incorporates an optimized nonlinear decision rule over different sets of feature vectors to improve the performance of statistical model-based voice activity detection(VAD). Conventional method performs VAD through setting up statistical models for each case of speech absence and presence assumption and comparing the geometric mean of the likelihood ratio (LR) for the individual frequency band extracted from input signal with the given threshold. We propose a novel VAD technique based on SVM by treating the LRs computed in each frequency bin as the elements of feature vector to minimize classification error probability instead of the conventional decision rule using geometric mean. As a result of experiments, the performance of SVM-based VAD using the proposed feature has shown better results compared with those of reported VADs in various noise environments.

Utilization of support vector machine for prediction of fracture parameters of concrete

  • Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2012
  • This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.

Estimating Fuzzy Regression with Crisp Input-Output Using Quadratic Loss Support Vector Machine

  • Hwang, Chang-Ha;Hong, Dug-Hun;Lee, Sang-Bock
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.53-59
    • /
    • 2004
  • Support vector machine(SVM) approach to regression can be found in information science literature. SVM implements the regularization technique which has been introduced as a way of controlling the smoothness properties of regression function. In this paper, we propose a new estimation method based on quadratic loss SVM for a linear fuzzy regression model of Tanaka's, and furthermore propose a estimation method for nonlinear fuzzy regression. This approach is a very attractive approach to evaluate nonlinear fuzzy model with crisp input and output data.

  • PDF

A Wavelet-based Profile Classification using Support Vector Machine (SVM을 이용한 웨이블릿기반 프로파일분류에 관한 연구)

  • Kim, Seong-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.3-6
    • /
    • 2008
  • 베어링은 각종 설비에서 활용하는 중요한 기계요소 중 하나이다. 설비고장의 상당수는 베어링의 결함이나 파손에 기인하고 있다. 따라서 베어링에 대한 온라인모니터링기술은 설비의 정지를 예방하고 손실을 줄이는 데 필수적이다. 본 논문은 진동신호를 이용하여 베어링의 상태를 예측하기 위한 온라인모니터링에 대해 연구한다. 프로파일로 주어지는 진동신호는 이산웨이블릿변환을 통해 분석되고, 분해수준별 웨이블릿계수로부터 얻은 통계적 특징 중 유의한 것을 선별하고자 분산분석 (ANOVA)을 이용한다. 선별된 특징벡터는 Support Vector Machine (SVM)의 입력이 되는 데, 본 논문에서는 다중클래스 분류문제를 다루기 위한 계층적 SVM 네트워크를 제안한다.

  • PDF

Fault diagnosis of rotating machinery using multi-class support vector machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • 황원우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.537-543
    • /
    • 2003
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the vibration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

  • PDF

Face Detection in Near Infra-red for Human Recognition (휴먼 인지를 위한 근적외선 영상에서의 얼굴 검출)

  • Lee, Kyung-Sook;Kim, Hyun-Deok
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.189-195
    • /
    • 2012
  • In this paper, face detection method in NIR(Near-InfraRed) images for human recognition is proposed. Edge histogram based on edge intensity and its direction, has been used to detect effectively faces on NIR image. The edge histogram descripts and discriminates face effectively because it is strong in environment of lighting change. SVM(Support Vector Machine) has been used as a classifier to detect face and the proposed method showed better performance with smaller features than in ULBP(Uniform Local Binary Pattern) based method.