• Title/Summary/Keyword: support vector data description

Search Result 51, Processing Time 0.027 seconds

Fault Detection Algorithm of Hybrid electric vehicle using SVDD (SVDD 기법을 이용한 하이브리드 전기자동차의 고장검출 알고리즘)

  • Na, Sang-Gun;Jeon, Jong-Hyun;Han, In-Jae;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.224-229
    • /
    • 2011
  • In this paper, in order to improve safety of hybrid electric vehicle a fault detection algorithm is introduced. The proposed algorithm uses SVDD techniques. Two methods for learning a lot of data are used in this technique. One method is to learn the data incrementally. Another method is to remove the data that does not affect the next learning. Using lines connecting support vectors selection of removing data is made. Using this method, lot of computation time and storage can be saved while learning many data. A battery data of commercial hybrid electrical vehicle is used in this study. In the study fault boundary via SVDD is described and relevant algorithm for virtual fault data is verified. It takes some time to generate fault boundary, nevertheless once the boundary is given, fault diagnosis can be conducted in real time basis.

  • PDF

Reconstructing Occluded Facial Components using Support Vector Data Description (지지 벡터 데이터 기술을 이용한 가려진 얼굴 요소 복원)

  • Kim, Kyoung-Ho;Chung, Yun-Su;Lee, Sang-Woong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.457-461
    • /
    • 2010
  • Even though face recognition researches have been developed for a long ago, there is no practical face recognition system in real life. It is caused by several real situations where non-facial components such as glasses, scarf, and hair occlude facial components while facial images in a face database are well designed. This occlusion decreases recognition performance. Previous approaches in recent years have tried to solve non-facial components but have not resulted in enough performance. In this paper, we propose a method to handle this problem based on support vector data description, which trains the hyperball in feature space to find the minimum distance estimating the approximated face. In order to evaluate its performance and validate the effectiveness of the proposed method, we make several experiments and the results show that the proposed method has a considerable effectiveness.

Robust determination of control parameters in K chart with respect to data structures (데이터 구조에 강건한 K 관리도의 관리 모수 결정)

  • Park, Ingkeun;Lee, Sungim
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1353-1366
    • /
    • 2015
  • These days Shewhart control chart for evaluating stability of the process is widely used in various field. But it must follow strict assumption of distribution. In real-life problems, this assumption is often violated when many quality characteristics follow non-normal distribution. Moreover, it is more serious in multivariate quality characteristics. To overcome this problem, many researchers have studied the non-parametric control charts. Recently, SVDD (Support Vector Data Description) control chart based on RBF (Radial Basis Function) Kernel, which is called K-chart, determines description of data region on in-control process and is used in various field. But it is important to select kernel parameter or etc. in order to apply the K-chart and they must be predetermined. For this, many researchers use grid search for optimizing parameters. But it has some problems such as selecting search range, calculating cost and time, etc. In this paper, we research the efficiency of selecting parameter regions as data structure vary via simulation study and propose a new method for determining parameters so that it can be easily used and discuss a robust choice of parameters for various data structures. In addition, we apply it on the real example and evaluate its performance.

Recognizing the Direction of Action using Generalized 4D Features (일반화된 4차원 특징을 이용한 행동 방향 인식)

  • Kim, Sun-Jung;Kim, Soo-Wan;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.518-528
    • /
    • 2014
  • In this paper, we propose a method to recognize the action direction of human by developing 4D space-time (4D-ST, [x,y,z,t]) features. For this, we propose 4D space-time interest points (4D-STIPs, [x,y,z,t]) which are extracted using 3D space (3D-S, [x,y,z]) volumes reconstructed from images of a finite number of different views. Since the proposed features are constructed using volumetric information, the features for arbitrary 2D space (2D-S, [x,y]) viewpoint can be generated by projecting the 3D-S volumes and 4D-STIPs on corresponding image planes in training step. We can recognize the directions of actors in the test video since our training sets, which are projections of 3D-S volumes and 4D-STIPs to various image planes, contain the direction information. The process for recognizing action direction is divided into two steps, firstly we recognize the class of actions and then recognize the action direction using direction information. For the action and direction of action recognition, with the projected 3D-S volumes and 4D-STIPs we construct motion history images (MHIs) and non-motion history images (NMHIs) which encode the moving and non-moving parts of an action respectively. For the action recognition, features are trained by support vector data description (SVDD) according to the action class and recognized by support vector domain density description (SVDDD). For the action direction recognition after recognizing actions, each actions are trained using SVDD according to the direction class and then recognized by SVDDD. In experiments, we train the models using 3D-S volumes from INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset and recognize action direction by constructing a new SNU dataset made for evaluating the action direction recognition.

microRNA target prediction when negative data is not available for learning (학습을 위한 네거티브 데이터가 존재하지 않는 경우의 microRNA 타겟 예측 방법)

  • Rhee, Je-Keun;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.212-216
    • /
    • 2008
  • 기존의 알려진 데이터에 기반하여 분류 알고리즘을 통해 새로운 생물학적인 사실을 예측하는 것은 생물학 연구에 매우 유용하다. 하지만 생물학 데이터 분류 문제에서 positive 데이터만 존재할 뿐, negative 데이터는 존재하지 않는 경우가 많다. 이와 같은 상황에서는 많은 경우에 임의로 negative data를 구성하여 사용하게 된다. 하지만, negative 데이터는 실제로 negative임이 보장된 것이 아니고, 임의로 생성된 데이터의 특성에 따라 분류 성능 및 모델의 특성에 많은 차이를 보일 수 있다. 따라서 본 논문에서는 단일 클래스 분류 알고리즘 중 하나인 support vector data description(SVDD) 방법을 이용하여 실제 microRNA target 예측 문제에서 positive 데이터만을 이용하여 학습하고 분류를 수행하였다. 이를 통해 일반적인 이진 분류 방법에 비해 이와 같은 방법이 실제 생물학 문제에 보다 적합하게 적용될 수 있음을 확인한다.

  • PDF

Anomaly Intrusion Detection Based on Hyper-ellipsoid in the Kernel Feature Space

  • Lee, Hansung;Moon, Daesung;Kim, Ikkyun;Jung, Hoseok;Park, Daihee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1173-1192
    • /
    • 2015
  • The Support Vector Data Description (SVDD) has achieved great success in anomaly detection, directly finding the optimal ball with a minimal radius and center, which contains most of the target data. The SVDD has some limited classification capability, because the hyper-sphere, even in feature space, can express only a limited region of the target class. This paper presents an anomaly detection algorithm for mitigating the limitations of the conventional SVDD by finding the minimum volume enclosing ellipsoid in the feature space. To evaluate the performance of the proposed approach, we tested it with intrusion detection applications. Experimental results show the prominence of the proposed approach for anomaly detection compared with the standard SVDD.

Unusual Behavior Detection of Korean Cows using Motion Vector and SVDD in Video Surveillance System (움직임 벡터와 SVDD를 이용한 영상 감시 시스템에서 한우의 특이 행동 탐지)

  • Oh, Seunggeun;Park, Daihee;Chang, Honghee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.795-800
    • /
    • 2013
  • Early detection of oestrus in Korean cows is one of the important issues in maximizing the economic benefit. Although various methods have been proposed, we still need to improve the performance of the oestrus detection system. In this paper, we propose a video surveillance system which can detect unusual behavior of multiple cows including the mounting activity. The unusual behavior detection is to detect the dangerous or abnormal situations of cows in video coming in real time from a surveillance camera promptly and correctly. The prototype system for unusual behavior detection gets an input video from a fixed location camera, and uses the motion vector to represent the motion information of cows in video, and finally selects a SVDD (one of the most well-known types of one-class SVM) as a detector by reinterpreting the unusual behavior into an one class decision problem from the practical points of view. The experimental results with the videos obtained from a farm located in Jinju illustrate the efficiency of the proposed method.

Traffic Flooding Attack Detection on SNMP MIB Using SVM (SVM을 이용한 SNMP MIB에서의 트래픽 폭주 공격 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Recently, as network flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems(IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network environment. In this paper we propose a lightweight and fast detection mechanism for traffic flooding attacks. Firstly, we use SNMP MIB statistical data gathered from SNMP agents, instead of raw packet data from network links. Secondly, we use a machine learning approach based on a Support Vector Machine(SVM) for attack classification. Using MIB and SVM, we achieved fast detection with high accuracy, the minimization of the system burden, and extendibility for system deployment. The proposed mechanism is constructed in a hierarchical structure, which first distinguishes attack traffic from normal traffic and then determines the type of attacks in detail. Using MIB data sets collected from real experiments involving a DDoS attack, we validate the possibility of our approaches. It is shown that network attacks are detected with high efficiency, and classified with low false alarms.

Human following of Indoor mobile service robots with a Laser Range Finder (단일레이저거리센서를 탑재한 실내용이동서비스로봇의 사람추종)

  • Yoo, Yoon-Kyu;Kim, Ho-Yeon;Chung, Woo-Jin;Park, Joo-Young
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • The human-following is one of the significant procedure in human-friendly navigation of mobile robots. There are many approaches of human-following technology. Many approaches have adopted various multiple sensors such as vision system and Laser Range Finder (LRF). In this paper, we propose detection and tracking approaches for human legs by the use of a single LRF. We extract four simple attributes of human legs. To define the boundary of extracted attributes mathematically, we used a Support Vector Data Description (SVDD) scheme. We establish an efficient leg-tracking scheme by exploiting a human walking model to achieve robust tracking under occlusions. The proposed approaches were successfully verified through various experiments.

Image Registration Using Repetitive Patterns (반복 패턴을 이용한 영상 정합)

  • Ha, Seong Jong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.306-308
    • /
    • 2012
  • 본 논문은 특징 클러스터에 대한 묘사에 기반한 새로운 특징 기반 영상 정합을 제안한다. 추출되는 특징들을 모두 동등하게 처리하는 기존 방법은 반복 패턴이 존재하는 영상에서는 매칭이 종종 실패하거나 적은 일치점만을 제공한다. 그 이유는 서로 닮아 있는 반복 패턴들로 인해 기하학적으로 일관되지 않은 매칭점들이 발생하거나 거리 비율 테스트를 통과하지 못하기 때문이다. 이에 반해 제안하는 방법은 더 많은 수의 일치점들을 발견할 수 있다. 이를 위해 제안하는 방법은 먼저 추출된 특징들을 반복 패턴으로부터 온 것들과 그렇지 않은 두드러진 특징들로 분리한다. 그런 후 support vector data description을 이용하여 각 반복 패턴들을 묘사한다. 동일하지 않은 영상이 매칭되는 경우를 제거하고 기하학적으로 일관된 일치점들을 제공하기 위해 매칭된 쌍에 대한 기하학적인 단서가 추가된다. 실험을 통해 제안하는 방법은 반복 패턴으로부터 추출된 특징들에 대해 일치점을 제공함으로써 더 많은 수의 일치점을 제공하게 되어 더 정확한 영상 정합을 수행한다는 것을 증명하였다.

  • PDF