• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.023 seconds

Optimization of Culture Conditions for Maintaining Pig Muscle Stem Cells In Vitro

  • Choi, Kwang-Hwan;Yoon, Ji Won;Kim, Minsu;Jeong, Jinsol;Ryu, Minkyung;Park, Sungkwon;Jo, Cheorun;Lee, Chang-Kyu
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.659-667
    • /
    • 2020
  • Muscle stem cells isolated from domestic animals, including cows and pigs, were recently spotlighted as candidates for the production of alternative protein resources, so-called cultured meat or lab-grown meat. In the present study, we aimed to optimize the in vitro culture conditions for the long-term expansion of pig muscle stem cells via the screening of various signaling molecules. Pig muscle stem cells were collected from the biceps femoris muscles of 3-d-old crossbred pigs (Landrace×Yorkshire×Duroc, LYD) and cultured in minimum essential medium-based growth media. However, the pig muscle stem cells gradually lost their proliferation ability and featured morphologies during the long-term culture over two weeks. To find suitable in vitro culture conditions for an extended period, skeletal muscle growth medium-2, including epidermal growth factor (EGF), dexamethasone, and a p38 inhibitor (SB203580), was used to support the stemness of the pig muscle stem cells. Interestingly, pig muscle stem cells were stably maintained in a long-term culture without loss of the expression of myogenic marker genes as determined by PCR analysis. Immunostaining analysis showed that the stem cells were capable of myogenic differentiation after multiple passaging. Therefore, we found that basal culture conditions containing EGF, dexamethasone, and a p38 inhibitor were suitable for maintaining pig muscle stem cells during expanded culture in vitro. This culture method may be applied for the production of cultured meat and further basic research on muscle development in the pig.

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon (영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출)

  • Hwang, Yuhoon;Mines, Paul D.;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.521-527
    • /
    • 2016
  • Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

A Multipurpose Design Framework for Hardware-Software Cosimulation of System-on-Chip (시스템-온-칩의 하드웨어-소프트웨어 통합 시뮬레이션을 위한 다목적 설계 프레임워크)

  • Joo, Young-Pyo;Yun, Duk-Young;Kim, Sung-Chan;Ha, Soon-Hoi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.9_10
    • /
    • pp.485-496
    • /
    • 2008
  • As the complexity of SoC (System-on-Chip) design increases dramatically. traditional system performance analysis and verification methods based on RTL (Register Transfer Level) are no more valid for increasing time-to-market pressure. Therefore a new design methodology is desperately required for system verification in early design stages. and hardware software (HW-SW) cosimulation at TLM (Transaction Level Modeling) level has been researched widely for solving this problem. However, most of HW-SW cosimulators support few restricted ion levels only, which makes it difficult to integrate HW-SW cosimulators with different ion levels. To overcome this difficulty, this paper proposes a multipurpose framework for HW SW cosimulation to provide systematic SoC design flow starting from software application design. It supports various design techniques flexibly for each design step, and various HW-SW cosimulators. Since a platform design is possible independently of ion levels and description languages, it allows us to generate simulation models with various ion levels. We verified the proposed framework to model a commercial SoC platform based on an ARM9 processor. It was also proved that this framework could be used for the performance optimization of an MJPEG example up to 44% successfully.

Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology (발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발)

  • Lee, Hye-Jin;Yeon, Simo;Son, Yong;Lee, Nak-Kyu
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.

The Respective Effects of Shoot Height and Conservation Method on the Yield and Nutritive Value, and Essential Oils of Wormwood (Artemisia montana Pampan)

  • Kim, S.C.;Adesogan, A.T.;Ko, Y.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.816-824
    • /
    • 2006
  • This study was conducted to evaluate the shoot height at which the yield and nutritive value of wormwood (Artemisia montana) is optimized in order to provide information on its potential to support animal production (Experiment 1). A second objective was to determine how the essential oil (EO) concentration in wormwood hay and silage differ (Experiment 2). In Experiment 1, Artemisia montana was harvested at five different shoot heights (20, 40, 60, 80 and 100 cm) from triplicate $1.8{\times}1.8m$ plots. Dry matter (DM) yield was measured at each harvest date and the harvested wormwood was botanically separated into leaf, stalk and whole plant fractions and analyzed for chemical composition and in vitro dry matter digestibility (DMD). Values for total digestible nutrients (TDN), digestible energy (DE) and metabolizable energy (ME) were subsequently calculated using prediction equations. Dry matter yields of stalk and whole plant increased linearly (p<0.001) and leaf yield increased quadratically (p<0.01) with shoot height, whereas the leaf/stalk ratio decreased linearly (p<0.001). As shoot height increased, there was a linear increase (p<0.001) in leaf DM, ether extract (EE) and neutral detergent fiber (NDF) contents and a quadratic increase (p<0.05) in leaf acid detergent fiber (ADF) and nitrogen free extract (NFE) contents, and stalk and whole plant DM (p<0.001), organic matter (OM, p<0.01 and p<0.05), NDF (p<0.001 and 0.05) and NFE (p<0.05) contents. However, there were decreases in leaf crude protein content (CP, quadratic, p<0.001) and stalk and whole plant EE content (linear, p<0.001), CP (quadratic, p<0.05) and ash (quadratic, p<0.05) contents. Digestibility of DM and TDN, and DE and ME value in leaves were not affected by increasing shoot height, but these measures linearly decreased (p<0.001) in stalk and whole plant. In Experiment 2, the hay had higher DM and CP concentrations, but lower EE concentration than the silage. Essential oil (EO) content in wormwood silage (0.49 g/100 g DM) was higher (p<0.05) than that in wormwood hay (0.32 g/100 g DM). Wormwood hay contained 25 essentail oils (EO) including camphor (10.4 g/100 g), 1-borneol (11.6 g/100 g) and caryophyllene oxide (27.7 g/100 g), and wormwood silage had 26 EO constituents including 3-cyclohexen-1-ol (8.1 g/100 g), trans-caryophyllene (8.6 g/100 g) and ${\gamma}$-selinene (16.8 g/100 g). It is concluded that the most ideal shoot height for harvesting wormwood is 60 cm based on the optimization of DM yield and nutritive value. Wormwood silage had a greater quantity and array of EO than wormwood hay.

Evaluation of Results in Recent Flexible Solar Cell Research Trends via Network Analysis Method (네트워크 분석을 이용한 플렉시블 태양전지 최근 연구동향 분석)

  • Byun, Kisik;Lim, Jae Sung;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.600-613
    • /
    • 2018
  • The purpose of this research was to introduce a network analysis method for analyzing the recent trend of the flexible solar cell using a scholarly database. Based on the five years from 2013 to 2017, we used centrality analysis of research papers via measurement of degree centrality, closeness centrality, and betweenness centrality. The results of network analysis show that cell has a centrality value above 0.8, which means that cell is connected with 80% of the total keywords, so it is recognized as the center of flexible solar cell research. The analysis results also indicate that perovskite and copper indium gallium diselenide (CuInGaSe2, or CIGS) are the center of the subgroup for cell. We recognize that the result refers to recent new technology called the CIGS/perovskite tandem solar cell. We hope that the network analysis method will be the appropriate and precise tool for technology and research planning via elaboration and optimization.

Run-time Memory Optimization Algorithm for the DDMB Architecture (DDMB 구조에서의 런타임 메모리 최적화 알고리즘)

  • Cho, Jeong-Hun;Paek, Yun-Heung;Kwon, Soo-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.413-420
    • /
    • 2006
  • Most vendors of digital signal processors (DSPs) support a Harvard architecture, which has two or more memory buses, one for program and one or more for data and allow the processor to access multiple words of data from memory in a single instruction cycle. We already addressed how to efficiently assign data to multi-memory banks in our previous work. This paper reports on our recent attempt to optimize run-time memory. The run-time environment for dual data memory banks (DBMBs) requires two run-time stacks to control activation records located in two memory banks corresponding to calling procedures. However, activation records of two memory banks for a procedure are able to have different size. As a consequence, dual run-time stacks can be unbalanced whenever a procedure is called. This unbalance between two memory banks causes that usage of one memory bank can exceed the extent of on-chip memory area although there is free area in the other memory bank. We attempt balancing dual run-time slacks to enhance efficiently utilization of on-chip memory in this paper. The experimental results have revealed that although our algorithm is relatively quite simple, it still can utilize run-time memories efficiently; thus enabling our compiler to run extremely fast, yet minimizing the usage of un-time memory in the target code.

Optimization of Number of Training Documents in Text Categorization (문헌범주화에서 학습문헌수 최적화에 관한 연구)

  • Shim, Kyung
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.4 s.62
    • /
    • pp.277-294
    • /
    • 2006
  • This paper examines a level of categorization performance in a real-life collection of abstract articles in the fields of science and technology, and tests the optimal size of documents per category in a training set using a kNN classifier. The corpus is built by choosing categories that hold more than 2,556 documents first, and then 2,556 documents per category are randomly selected. It is further divided into eight subsets of different size of training documents : each set is randomly selected to build training documents ranging from 20 documents (Tr-20) to 2,000 documents (Tr-2000) per category. The categorization performances of the 8 subsets are compared. The average performance of the eight subsets is 30% in $F_1$ measure which is relatively poor compared to the findings of previous studies. The experimental results suggest that among the eight subsets the Tr-100 appears to be the most optimal size for training a km classifier In addition, the correctness of subject categories assigned to the training sets is probed by manually reclassifying the training sets in order to support the above conclusion by establishing a relation between and the correctness and categorization performance.

Stability and Optimization of Crude Protease Extracted from Korean Kiwifruits (국내산 키위에서 추출한 protease 조효소액의 안정성과 최적화에 관한 연구)

  • Kim, Mi-Hyun;Rho, Jeong-Hae;Song, Hyo-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.554-558
    • /
    • 2010
  • In the study, the protease activity of kiwifruit (Actinidia deliciosa Planch) cultivated in Korea was estimated, with specific examination of proteolytic effects on myofibrilar protein. The crude protease extract of kiwifruit was prepared in two ways; one in which the kiwifruit was homogenized with buffer followed by centrifugation, and the other were the supernatant was precipitated by saturated ammonium sulfate followed by dialysis. The former had 21.23 mM/mL of protease activity, which corresponded to 112.28 mM/g kiwifruit utilized, and the latter had 11.58 mM/mL and 45.80 mM/g of kiwifruit. The crude protease extract of the kiwifruit showed high specificity for casein substrate followed by bovine serum albumin, egg white, collagen, and elastin, in order. The enzyme lost proteolytic activity in acidic conditions such as pH 2-3, and at high temperatures over $60^{\circ}C$. It showed optimal activity in both pH 3.0 and pH 7.5 as well as at $40^{\circ}C$ for casein substrate and at $50^{\circ}C$ for myofibrilar protein substrate. The proteolytic activity toward casein was high with up to 0.5M salt, followed by a sharp decrease beyond this concentration. On the other hand the proteolytic activity for myofibrilar protein decreased steadily with increasing of salt concentration. Kiwifruit has been used as a for meat tenderizer for in home cooking and these results support the its tenderizing effectiveness of kiwifruit especially for Korean style marinating of meat for cooking.